Правда, как мы помним, программа индивидуального развития может в определенных пределах исправлять такие отклонения, обходными путями возвращая развивающийся организм на основную линию. Именно эта особенность онтогенеза делает вообще возможными северцовские ценогенезы — изменения, проявляющиеся на промежуточных стадиях, но не сказывающиеся на конечной. Но пределы устойчивости онтогенеза не безграничны — иначе никакой эволюции вообще не могло бы быть: обладай механизмы коррекции развития абсолютной эффективностью, зародыши с любыми изменениями в генотипе развивались бы в одну и ту же навечно заданную взрослую форму. Если же изменение хода развития не удается подкорректировать, то каждая последующая стадия неизбежно будет все сильнее отличаться от того, как она должна была бы выглядеть при стандартном «сценарии». Между тем «программа индивидуального развития» — это не что иное, как геном, и изменения в нем так или иначе сводятся к случайным мутациям. Понятно, что случайное изменение, затрагивающее только одну стадию онтогенеза, имеет меньше шансов оказаться неприемлемо-вредным, чем случайное изменение нескольких или даже вообще всех стадий. Ведь если некая мутация ведет к гибели зародыша (или хотя бы резко снижает его жизнеспособность) на какой-то из промежуточных стадий, то уже неважно, насколько полезной она оказалась бы организму во взрослом состоянии. Поэтому чем позже в онтогенезе проявляется то или иное изменение, тем выше его шансы закрепиться в качестве новой нормы — а значит, среди эволюционных изменений онтогенеза анаболии неизбежно будут встречаться чаще, чем девиации, и тем более — чем архаллаксисы. Это и создает впечатление, что геккелевская рекапитуляция — это норма, общее правило, а не соответствующие ей сценарии онтогенеза — отклонения и исключения.
Концепция Северцова стала исследовательской программой для сложившейся вокруг него школы эволюционных морфологов (одним из которых был уже знакомый нам Иван Шмальгаузен). Однако в целом в тогдашней мировой биологии она оказалась довольно слабо востребованной — хотя многим зарубежным ученым (не говоря уж о практически всех российских) она стала известна своевременно. Такая судьба концепции, наиболее внятно объясняющей механизмы действия знаменитого «биогенетического закона» (а заодно и не укладывающиеся в него факты), кажется странной. Видимо, причиной такой глухоты коллег стал опять-таки «дух времени»: первые десятилетия ХХ века были годами не только глубокого кризиса эволюционизма, но и охлаждения биологов (прежде всего молодых) к проблемам и методам биологии XIX века — и более всего к морфологии как к дисциплине неисправимо-описательной, закрытой для экспериментов и точных методов. Поразительно, но даже те современники, которые обратили внимание на концепцию Северцова и одобрительно отозвались о ней, часто не замечали в ней ее наиболее ценных и интересных идей — настолько эти идеи были чужды тому, что обсуждалось в тогдашней биологии.
Последние десять лет жизни Северцова пришлись на время нового подъема эволюционной биологии. Но основой его стал синтез эволюционизма с генетикой, а основным предметом интереса — генетические механизмы эволюции и микроэволюционные процессы (в которых морфологические изменения, как правило, очень невелики, а плодотворность применения к ним северцовских категорий близка к нулю). При этом любые эволюционные процессы рассматривались так, словно естественный отбор оценивает непосредственно гены — то есть связь между геном и некоторым фенотипическим признаком (который только и может оцениваться отбором) мыслилась как однозначное взаимное соответствие.
Не нужно полагать, что создатели СТЭ были так наивны. Они прекрасно понимали, что на самом деле ген и признак связывает длинная и сложная цепочка взаимодействий, в той или иной мере чувствительных к воздействию окружающих условий. И что само понятие «признак» достаточно условно, и та наследственная черта, которую мы называем признаком, может определяться работой множества генов (и наоборот — один ген может влиять на целый ряд особенностей, которые мы воспринимаем как отдельные признаки). Но у них в то время практически не было инструментов и методов, позволяющих исследовать конкретную работу генов (о самой природе которых в ту пору не было известно практически ничего) в ходе индивидуального развития. В такой ситуации естественно было абстрагироваться от тех процессов, которые невозможно изучать, и принять представление об однозначной связи гена и признака как рабочее упрощение. «Мы обещаем, что когда-нибудь подберем ключик к этой шкатулке, а пока давайте займемся тем, что можно сделать, не открывая ее», — сформулировал много лет спустя эту позицию известный английский эволюционист Джон Мейнард Смит, ученик уже знакомого нам Джона Холдейна.
Проблемы крупных морфологических преобразований и эволюции онтогенеза надолго отошли на второй план.
Правда, и в это время находились ученые, сохранявшие взгляд на эволюцию не как на «изменение генных частот», а как на преобразование целостного организма, причем на всех стадиях его жизненного цикла. Наиболее плодотворно работали в этом направлении уже знакомый нам Иван Шмальгаузен и английский биолог Конрад Уоддингтон. Оба они искали пути, которые позволили бы связать генетические изменения с изменениями хода онтогенеза и в конечном счете — форм организмов.
Уоддингтон, начинавший как эмбриолог-экспериментатор, попытался использовать уже разработанные к тому времени генетиками методы анализа мутаций для расшифровки механизма регуляции эмбрионального развития. Эта работа привела его к идее «эпигенетического ландшафта»: развивающийся зародыш Уоддингтон уподоблял тяжелому шарику, скатывающемуся по склону горы от вершины (зачатия) до подножия (зрелого состояния). Рельеф этого склона довольно прихотлив, и его гребни и борозды определяют траекторию движения шарика. Этот рельеф задается генами, регулирующими развитие, и может быть изменен в результате мутаций (как реальный рельеф горного склона может быть изменен землетрясением или оползнем). Поскольку распределение «выступов» и «впадин» задает траекторию развития организма, мутации, меняющие это распределение, тем самым могут пустить развитие по другому пути. Понятно, что при любом конкретном состоянии ландшафта число возможных онтогенетических путей ограничено: «шарик» не может перекатываться через «выступы», выскакивать из «желобов» и вообще катиться «вверх». Эти возможные онтогенетические пути Уоддингтон назвал креодами.
Подход Шмальгаузена был несколько иным. Центральным в нем стало понятие нормы реакции, введенное в 1909 году немецким гидробиологом Рихардом Вольтереком. Суть его в том, что практически у любого признака, определяемого генами, есть некоторый «люфт» — пределы, в которых он может изменяться при заданном генотипе. Вспомним опыты Иогансена: даже фасолины, вызревшие на одном кусте, несколько отличались друг от друга по размеру и пропорциям, хотя были генетически идентичны и развивались в одних и тех же условиях. Если же условия развития сильно отличаются, то один и тот же генотип может формировать очень разные фенотипы. Вспомним альтернативные программы развития у саранчи, животных с физиологическим (то есть задаваемым условиями внешней среды) определением пола, вспомним результаты опытов Боннье, Шманкевича и других неоламаркистов. Наконец, можно вспомнить любимый пример самого Шмальгаузена — стрелолист (об особенностях формообразования у которого мы уже немного говорили в главе «…Что любое движенье направо начинается с левой ноги»). Как известно, это растение имеет три типа листьев. Листья, расположенные над водой, имеют весьма характерную форму, напоминающую наконечник стрелы (откуда и название растения), и обладают довольно мощными стоячими черешками. По поверхности воды плавают округлые листья, соединенные с растением шнуровидными черешками — длинными, тонкими и гибкими. А листья подводные имеют лентовидную форму и не разделены на черешок и пластинку. Все три типа листьев могут присутствовать на одном индивидуальном растении и, следовательно, быть сформированы в результате работы одного и того же генома.
По мысли Шмальгаузена, ген определяет не признак как таковой, а его норму реакции — пределы, в которых этот признак может изменяться. Внутри этого диапазона то, каким именно будет данный признак, определяется факторами окружающей среды (а также, возможно, влиянием других генов). У организмов с жестко определенной конечной формой этот выбор обычно делается на определенной стадии онтогенеза и уже не меняется всю дальнейшую жизнь: взрослый саранчук уже никогда не превратится в одиночную кобылку, самец крокодила — в самку, каковы бы ни были параметры среды, в которой им придется жить. У выросших на холоде мышей после перевода в теплое помещение не увеличиваются уши и хвосты. Но даже у таких организмов есть признаки, которые могут меняться «туда-сюда»: летняя и зимняя окраска многих млекопитающих умеренных и приполярных областей, брачные наряды (включающие порой не только смену цвета покровов, но и отрастание весьма причудливых «украшений»), пигментация человеческой кожи и т. д. В конечном счете на сдвигах в пределах нормы реакции основаны все адаптивные модификации — закономерные изменения характерных видовых признаков в сторону, более адекватную изменившимся условиям. Однако это не изначально присущее всему живому свойство (как полагали ламаркисты), а результат действия сложного механизма, устанавливающего связь между определенными воздействиями среды и сдвигами некоторых признаков (в пределах их нормы реакции) в определенную сторону[194]. Иными словами, всякая адаптивная модификация — это всегда результат предшествующей эволюции. Но она в самом деле может стать первым шагом в эволюции дальнейшей — если те условия, ответом на которые была данная модификация, в какой-то момент станут постоянными для вида или каких-то его популяций. В этом случае отбор пойдет на сужение нормы реакции тех генов, что обеспечивали модификацию, и развитие, которое раньше могло в зависимости от условий пойти в сторону «обычной» или «модифицированной» формы, теперь при любых условиях будет развиваться по «модифицированному» варианту. Возможно даже, что у одной части вида развитие стабилизируется на одном «краю» прежней широкой нормы реакции, а у другой — на другом. И то, что было разными жизненными формами одного вида, превратится в разные виды. Например, ряд пресноводных рыб в некоторых водоемах (обычно в озерах) образует две «расы», резко различающиеся как экологически, так и морфологически. В частности, у всем известного обыкновенного окуня од