Дело 581-14/ОДЧ Опасно для человечества. Книга 2 — страница 44 из 53

, неминуемо зададут вопрос: а как же те, кто отправился в Космос через обычное пространство? Как получилось, что те же «Северные экспедиции», которые по всем расчётам ещё должны лететь, уже давно достигли Сангуса и Замка́, и обосновались на них? Как была заселена система Аль Рами и откуда взялись колонии Тёмных миров?

Ответ прост. Сейчас мало кто помнит, но именно «Потерянные экспедиции» внесли основной вклад в создание гиперпривода.

Меньше чем за полвека после Зари Терра полностью восстановила свою научно-техническую и промышленную базу и начала активно развиваться. На основе изучения остатков захваченной техники мантис и новых разработок был совершён качественный скачок в науке и технике, в представлении о физике Космоса. Перед человечеством встал вопрос расширения своих владений. Это не был праздный интерес или тяга к неограниченной экспансии. Это была необходимость. Нашествие мантис показало, как мы уязвимы. Если бы к моменту появлению флота вторжения человечество всё ещё оставалось в пределах Терры, то с большой вероятностью закончилась бы не только история нашей цивилизации, но и история биологического вида Homo sapiens.

С 240 по 312 год стартовало пятнадцать кораблей программы «Терра №» с прямоточным приводом. Они представляли огромные сооружения, больше всего похожие на обычный бокал для вина. Сам «бокал» был ловушкой для космического вещества, а в роли «основания бокала» выступал отражатель. В «ножке» бокала располагался экипаж и груз. Как оказалось, антивещества – в основном, позитронов, – в открытом космосе гораздо больше, чем предполагали наши предки, и поступающие в прямоточный двигатель элементарные частицы и пыль посредством магнитного поля делились на два потока и аннигилировали в зоне отражателя. Именно поэтому такие корабли называются прямоточными.


За кораблями проекта «Терра №» велось наблюдение: первое, что было создано в процессе восстановления после Сумерек – станции дальнего обнаружения и контроля Пространства на орбите Плутона. И рано или поздно сигнатуры кораблей пропадали. Поначалу это списывали на сверхдальние расстояния: как-никак, корабли к этому времени набирали околосветовую скорость. Однако уже в 60-х годах было организовано постоянное наблюдение за полётом экспедиций. Регулярно сбрасывались автономные буи, которые передавали данные о состоянии корабля и всех процессах на нём, происходящих в автономном режиме. Более того, буи проводили дальнейший мониторинг полёта, пока на это хватало ресурсов. Таким образом, по пути следования корабля возникала цепочка автоматических станций, которые исправно передавали информацию на Терру, пусть и с серьёзной задержкой. И во всех случаях вскоре после достижения околосветовых скоростей – а корабли шли с постоянным ускорением – корабли исчезали. И не было никаких явных признаков внезапной катастрофы, сбоя в работе оборудования или ещё каких-то аномалий.

После анализа поступившей информации учёные выдвинули воистину революционную гипотезу. Они предположили, что на околосветовой скорости по пути следования корабля – вернее в его заборнике вещества – формируется искусственная кротовая нора. В которую корабль и «проваливается». Как и почему формировались кротовые норы перед кораблями, учёные до сих пор не дали ответа. Скорее всего, это происходило в результате какого-то системного технологического сбоя в работе заборника. Тем не менее, как это часто случается, это была так называемая «положительная ошибка», которая привела к появлению современных гиперприводов. И уже 312 год стал годом перелома в истории освоения Космоса. Весной стартовал последний прямоточный корабль-колонизатор с управляемым процессом образования кротовой норы, а спустя всего полгода – первый корабль с полноценным гиперприводом. И спустя восемь месяцев он вернулся на Терру с делегацией Теллура на борту.

К сожалению, из стартовавших на прямоточниках экспедиций быстро удалось обнаружить только три: две «Северные» и «Путь Востока». До сих пор неизвестно, почему большая часть случайных финиш-точек кротовых нор формировалась вблизи Туманности Шнайдера, но в результате колонисты оказались отрезанными от материнской планеты на века. К тому моменту, как эти колонии были обнаружены, среди большинства из них закрепилось мнение, что Терра их бросила. Разумеется, это не так. После того как возникло понимание происходящего, было принято решение заморозить старты прямоточников, но экспедиции, спонсированные инициативными группами государств, продолжались. Только проект «Терра №» включал пятнадцать экспедиций, и ещё столько же отправились в «частном» порядке. Именно эти экспедиции породили большую часть миров, которые сейчас называют «Тёмными».

Здесь стоит отметить, что понятие «Темные Миры» (ТМ) и «Дикие Миры» (ДМ) не синонимы, хотя в прессе их часто употребляют, как попало. ТМ – это миры, по каким-либо причинам не присоединившиеся к Торговому Союзу. ДМ – часть Тёмных миров, близких к Туманности. Именно Дикие Миры считаются основным поставщиком пиратов и наёмников самого низкого пошиба.

Причём Тёмные Миры вовсе не обязательно представляют собой технически отсталые планеты. Системное объединение Дантей, уже давно претендующее на то, чтобы стать лидером Тёмных – высокоразвитый технологический мир. Он даже принимает туристов из Торгового Союза. Но мы настоятельно рекомендуем вам не посещать эту систему. Обзор планет, любую из которых вы можете выбрать в качестве стартовой точки для своего путешествия, вы найдёте во второй части нашего путеводителя.


И, разумеется, раз уж речь зашла о Диких Мирах, мы не можем не заговорить о Туманности.

Конечно, все вы прекрасно знаете, что туманности – нередкое явление во Вселенной и нашей галактике. Они бывают большими и маленькими, размером с Млечный путь или не больше Солнечной; туманности могут быть тёмными – типа туманности «Конская голова» (IC434), светоотражающими, ионизированными (NGC604), и так далее. Но только одну туманность называют с большой буквы, Туманность. Это не каталогизированная, внесистемная Туманность Шнайдера или Барьер Шнайдера. Она названа именем гениального астрофизика Теодора Шнайдера, который считается погибшим в ходе исследования Туманности, изучению которой он посвятил бо́льшую часть своей жизни.

Туманность делит нашу Галактику по симметричным рукавам на две части. Именно поэтому мы до сих пор не можем исследовать вторую половину Млечного Пути даже в обозримом будущем. Исследовательская миссия «Шторм-3», которая, как предполагается, должна «перепрыгнуть» Туманность, достигнет края линзы галактики только к концу нашего века. Смогут ли отважные исследователи глубокого Космоса проникнуть через Барьер, какие испытания ждут их на этом нелёгком пути? Увы, этого не знает никто…

К сожалению или счастью, вы никогда не обнаружите Туманность при визуальном наблюдении из любой точки Пространства вне зоны Шнайдера. Однако если вы рискнёте приблизиться к ней, то Космос окрасится незабываемыми красками и причудливыми картинами. Пилоты и исследователи, работавшие в зоне Шнайдера, в один голос говорят, что не видели ничего прекраснее.

Однако не стоит покупаться на эту картинку. Туманность и отчасти примыкающие к ней районы – зона Шнайдера – невероятно опасны, поскольку являются областями нестабильного пространства.

О полётах в зоне Шнайдера рассказывают жуткие истории. Пилоты на полном серьёзе утверждают, что чем ближе к Туманности, тем чаще возникают помехи и сбои в оборудовании, самопроизвольно изменяется режим работы двигателей, при манёврах на больших перегрузках у людей начинаются галлюцинации. Ходят невнятные слухи об оживающей технике – от примитивных погрузчиков до киберсистем кораблей. О пилотах, которые рискнули пройти по краю Туманности и вышли из неё через пять часов субъективного времени – и пятьдесят лет объективного… Конечно, большая часть этих историй – выдумка, но слухи никогда не возникают на пустом месте. Кстати, то, что при выходе из зоны Шнайдера наблюдается разница в корабельном и объективном времени – доказанный факт. Но речь идёт о минутах, а никак не о часах, днях или годах. Так что можно смело утверждать, что известные нам законы мироздания в Туманности не действуют. Вернее, действуют самым причудливым образом.


……………..


И теперь, как нам кажется, пришла пора поговорить о космических кораблях в целом.

Подозреваем, что сейчас половина наших читателей подняла глаза и вздохнула: что они собрались рассказывать? Мы что, про корабли не знаем? Как ни странно, но это так. Подавляющее большинство людей, далёких от космических перелётов, плохо представляют себе и устройство современных кораблей, и их классы. Поэтому мы посчитали нужным провести краткий экскурс в эту область.

Итак, для начала – все космические корабли делятся на две большие группы: внутрисистемные («системники») и корабли дальнего действия («дальники»). Принципиальная разница между ними не только в наличии гиперпривода, но и в типе основных двигателей. Дело в том, что маршевые двигатели для движения в обычном пространстве и маршевые двигатели для разгона конструкционно разные и работают на разном топливе.

Внутрисистемные корабли предназначены только для движения в обычном пространстве, их двигатели имеют бо́льшую тягу, быстрее набирают скорость, но не способны работать в т. н. режиме наращивания импульса, то есть не могут разогнать корабль до релятивистских скоростей. Таким образом, на типовом дальнике стоит два вида двигателей – маршевый и разгонный. Выйдя из системы на маршевом двигателе, корабль укоряется на нём до предела и переключается на разгонные. Они хоть и обладают меньшей тягой, но имеют потолок скорости, достаточный для совершения гиперпрыжка.

На боевых кораблях используют универсальные двигатели. Они экономичнее, но намного сложнее в обслуживании и с меньшим сроком эксплуатации.


Независимо от того, о каком корабле идёт речь, он будет защищён силовыми полями. Создатели фильмов и сериалов очень любят показывать зрителям красивые вспышки излучателей и взрывы ракет на границах силовых полей корабля в ходе космических сражений. Но мы крайне не рекомендуем общать