Десять самых красивых экспериментов в истории науки — страница 15 из 23


Обмотка катушки не была соединена с батареей, поэтому теплороду браться было неоткуда. Единственно возможным источником нагрева была работа, которую проделывал Джоуль, вращая ручку. Как и в эксперименте с пушкой, проведенном Румфордом, вращательное движение преобразовывалось в движение иного рода — незаметные вибрации, которые наши пальцы ощущают как тепло.

Джоуль знал, что для переубеждения скептиков полученных результатов мало. Необходимо еще точно определить, какое количество работы совершено для получения соответствующего количества тепла. Он перестроил свой первоначальный прибор, обмотав двумя длинными кусками бечевы вал ручки так, что один отрезок бечевки был накручен в одну сторону, а второй — в другую. Каждый конец бечевы был продет через шкив и прикреплен к чаше весов, на которой находился груз. По мере падения груза катушка будет вращаться и генерировать электричество и тепло.

Испробовав различные веса, падавшие с разной высоты (чтобы падение было достаточно долгим, он даже выкопал две ямы в своем саду), он пришел к выводу, что 838-фунтовая масса, поднятая на фут над землей, создает механическое усилие, достаточное для того, чтобы нагреть фунт воды на один градус Фаренгейта. Поэтому температура на вершине и внизу водопада высотой 838 футов (около 255 м) — примерно такую высоту имеет водопад короля Эдварда VIII в Гайане — будет отличаться почти на один градус, внизу она будет теплее.

В августе 1843 года он изложил полученные результаты на научной конференции в ирландском городе Корке, но, как он позднее говорил, «эта тема не стала предметом всеобщего внимания». Не исключено, что обилие различных явлений — электричество, магнетизм, теплота, движение — не позволили слушателям вникнуть в суть доклада. Джоулю все еще требовался решающий эксперимент, способный убедить любого, но при этом простой, более элегантный и более четкий.




Веса и шкивы, приводящие в движение вал генератора
Рисунок из «Научных записок» Джоуля

К своей оксфордской встрече 1847 года с Томсоном Джоуль уже обладал таким доказательством. Наступал вечер, и его попросили сделать лекцию покороче. Из Манчестера он привез с собой установку, которую и поместил на столе в аудитории. Это был медный сосуд, изнутри покрытый оловом. Крышка также была оловянной. В отверстие посредине крышки входил вал латунного гребного колеса. Во второе отверстие вставлялся термометр.

Джоуль объяснил, как он наполнял сосуд водой и приделывал веса, бечеву и шкивы для того, чтобы колесо вращалось. С внутренней стороны сосуда направляющие лопасти препятствовали свободному вращению воды, увеличивая трение. Поместив на каждую чашу груз весом 29 фунтов (13 кг), он поднял его на высоту 5,25 фута (1,6 м) и позволил ему упасть вниз. Затем он снова намотал бечеву и повторно сбросил груз вниз. Так продолжалось двадцать раз. Это было равносильно тому, что груз весом 58 фунтов (26,3 кг) был сброшен с высоты 105 футов (32 м). Весь эксперимент он проделал девять раз, обнаружив в итоге, что вода нагрелась примерно на о,668°.




Усовершенствованная схема эксперимента Джоуля
Рисунок из «Научных записок» Джоуля

Он понимал, что часть силы падающего груза расходуется на преодоление трения между шкивами и струной. Чтобы определить, какая именно часть силы расходуется на это, он взял валик такого же диаметра, что и шпиндель, и, обмотав вокруг него бечевку, подвесил с обеих сторон по грузу. Постепенно добавляя небольшие веса с одной стороны, он обнаружил, что требуется примерно 7,2 унции (примерно 2оо г), чтобы нарушить равновесие и заставить валик шевельнуться.

Учтя этот и другие факторы, он уточнил свои предыдущие измерения; итак, чтобы нагреть один фунт воды на один градус, требуется 108 «килограмм-метров». Раньше он считал, что для этого необходимо 106,7, а один градус разницы в температуре имеет потенциал, необходимый для подъема 106,7 кг на один метр, и надо только понять, как этот градус использовать.

В тот раз, чтобы не затуманивать основной смысл, в эксперименте не использовались ни обмотки, ни гальванические элементы; тепло и работа не только оказались взаимосвязанными, но и, по сути, одним и тем же: два разных способа преобразования «усилия», или «жизненной силы», или, как мы теперь говорим, энергии, в движение. Выходит, работа — это результат приложения силы, смещающей тело на определенное расстояние. Например, лошадь, тянущая повозку. Это структурированная энергия, поставленная на службу человеку. Теплота же, наоборот, — непроизводительная работа, ненаправленная, неструктурированная — энергия, рассеиваемая в результате неупорядоченных микроскопических вибраций. По мере развития атомистической теории это представление обретало дополнительную конкретику: теплота — это вибрация атомов.

Такая формулировка была исключительно интересной и легко воспринимаемой: при поднятии веса с земли Джоуль расходует энергию, а когда груз падает вниз, он возвращает полученную ранее энергию. Если эту энергию впрячь в генератор, то работу можно преобразовать в электрическую энергию, которая будет приводить в движение моторы, качать воду в резервуар, а вытекая оттуда, вода в свою очередь будет вращать водяное колесо, которое можно использовать для завода гигантской часовой пружины. Но на каждом этапе этой схемы часть энергии будет теряться в виде тепла. А если груз будет падать, не производя при этом никакой полезной работы, то, кроме нагрева земли в месте падения и воздуха в результате трения об него падающего груза, ничего не произойти. Поэтому необходимо сохранять не теплород, а энергию.

Признав, что Джоуль совершил открытие, Томсон тут же задумался о том, что из него следует.

Итак, хотя тепло не исчезает из Вселенной, оно постепенно уменьшается, поскольку процесс перетекания от горячего к холодному, и никогда наоборот, — своего рода путь «безвозвратных потерь». Можно предположить, размышлял он, что мир когда-то был очень горяч и с тех пор постоянно остывает: ‘‘…какой-то конечный период времени тому назад и через какой-то конечный период времени в будущем Земля была и будет непригодна для обитания человека».

Ныне ясно, что это справедливо и в отношении всей Вселенной. Она началась с Большого взрыва и с тех пор постепенно «сползает вниз». И все это открылось потому, что кому-то захотелось понять, как устроена паровая машина!

Глава 8
АЛЬБЕРТ АБРАХАМ МАЙКЕЛЬСОН
Затерянные во Вселенной

В космосе отсутствуют приметы, поскольку каждая область пространства ничем не отличается от другой, а потому нельзя точно сказать, где мы находимся. По сути, мы плывем в безмятежном море и не можем определить свой курс ни по звездам, ни по компасу, ни по звукам, ни по направлению ветра, ни по приливу; мы даже не знаем, в каком направлении плывем. Нет у нас и лота, который мы бы бросили за борт, чтобы узнать, какова наша скорость; мы способны лишь рассчитать наше смещение по отношению к соседним телам, да только у нас нет ника* кого представления о том, как эти тела перемещаются в пространстве.

Джеймс Клерк Максвелл. Материя и движение



Для опытного моряка Альберта Абрахама Майкельсона картина, нарисованная Максвеллом, была бы настоящим кошмаром — дрейфовать безветренной ночью, не видя звезд, по которым можно определить, где ты находишься… Майкельсон изучал физику, будучи молодым человеком, во время службы в военном флоте США, а точнее, в Военно-морской академии в Аннаполисе, а также в океане, осваивая штурманское дело. Вы должны забыть о Копернике и думать как Птолемей. Вы и ваш корабль находятся в центре Вселенной, а звезды вращаются вокруг вас. При определении местоположения вам необходимо учитывать скорость вашего судна, а также силу и направление ветра. Несмотря на растерянность и неуверенность, наверняка присущие молодому курсанту, Майкельсон четко знал, что его корабль всегда в визире небесного ока, т. е. на соответствующей широте и долготе. При странствиях во Вселенной в принципе все должно обстоять так же. Должен быть какой-то стандарт, что-то постоянное, по отношению к чему можно производить измерения.

По крайней мере, он на это надеялся. В 1885 году Майкельсон в течение некоторого времени сам находился в большой неопределенности и проживал в нью-йоркской гостинице «Нормандия» под наблюдением опытного психиатра. По словам сослуживца Эдварда Морли, у Майкельсона «была слабая головка» — он то неожиданно возбуждался, то впадал в уныние. Жена пыталась поместить его в психиатрическую лечебницу, но врач в конце концов решил, что ничего страшного нет, — пациент всего лишь отличается повышенной впечатлительностью, и на него легко подействовать светом, цветом и видом того, как солнечные лучи играют на крылышках насекомых. Моряк Майкельсон мечтал о цветомузыке: исполнитель сидит за клавиатурой и нажимает зримые ноты цветового спектра, и тогда рождаются аккорды и арпеджио, «передающие все фантазии, настроения и эмоции человеческого сознания».

В ноябре 1885 года, оставаясь еще в психически очень неустойчивом состоянии, Майкельсон стал готовиться к возвращению в свою лабораторию в Кейсовской школе прикладных наук в Кливленде, однако вскоре он узнал, что место его уже занято и он может рассчитывать только на частичное жалованье. Тем не менее он вернулся домой и поселился в задней комнате дома, где, по правде, не очень-то был желанен. Теперь им владело желание провести свой самый грандиозный эксперимент — с помощью лучей света измерить скорость движения Земли по отношению к звездам.

В своем труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилей предложил, как можно проверить, является ли свет мгновенным или же он движется с конечной скоростью. Стоя ночью на вершине холма, экспериментатор должен направить яркий свет в сторону удаленного холма, на котором находится его помощник, ожидающий сигнала и готовый ответить аналогичным сигналом, как только увидит свет. При отсутствии заметной задержки между сигналами можно заключить, что «если свет не мгновенен, то скорость его очень высока».