Залы с более высокими ставками выглядели иначе. Вырез на платьях был глубже, а улыбки завлекательнее. Перед каждым вращением Люси, работавшая в помещении, где я находился, осознанно смотрела в камеру, словно говоря, что мой выбор верный. Мне пришлось заставить себя вспомнить, что она смотрела не только на меня, но и на 163 других игроков со всего мира.
Люси отвечала на вопросы клиентов.
– Да, у меня есть партнер. Но все сложно, – говорила она одному.
– О, я люблю путешествовать, – сообщала другому. – Я бы с радостью поехала в Париж, Мадрид, Лондон…
Камера переключилась на вид сверху, давая возможность увидеть ее ноги перед тем, как колесо пришло во вращение.
Мне стало очень некомфортно. Приходилось напоминать себе, зачем я здесь в первую очередь. Вернулся в помещение с более низкими ставками – там работал Макс, вежливый молодой человек, который давал статистические советы по выигрышным цветам и номерам. Похоже, на его рулетке хорошо шли большие числа.
Посмотрел на свой баланс. Я наугад ставил на красное и черное, особо не раздумывая, и с удивлением увидел, что после нескольких часов в казино у меня имелось 28 фунтов. Прибыль 8 фунтов за вечер. Дела шли хорошо.
Как узнать, почему мы выигрываем: потому что умело играем или потому что нам повезло? Я знал, что в онлайн-казино шансы против меня, пусть даже я после двух-трех часов и пополнил немного свой счет.
В других играх я не знаю, есть у меня преимущество или нет. Если я играю в покер с друзьями, то вижу, как моя стопка фишек растет и уменьшается. Но сколько времени пройдет, прежде чем я смогу сказать: я – лучший игрок? Если я установил стратегию спортивных ставок, как для чемпионата мира, – когда я узнаю, что она окупается?
Такие вопросы не ограничиваются азартными играми и спортом; они могут быть и политическими. Сколько избирателей нужно опросить, чтобы надежно оценить, кто выиграет президентские выборы в США? Они могут быть связаны с обществом: как узнать, проявляет ли компания расовую дискриминацию при найме людей? И даже личными: сколько времени вы должны отдать работе или отношениям с другим человеком, прежде чем решиться что-то поменять?
Удивительно, но существует формула, которая отвечает на все эти вопросы: назовем ее уравнением уверенности[39]. Вот оно:
Понятие степени уверенности отражается центральным символом ± (плюс-минус). Представьте, что вы спрашиваете меня, сколько чашек кофе в день я выпиваю. Я не знаю наверняка, поэтому могу сказать что-то вроде «четыре плюс-минус парочка», или 4 ± 2. Это – доверительный интервал, удобное обозначение и среднего значения, и отклонения от него. Это не значит, что я никогда не могу выпить 7 чашек (или только одну), но я вполне уверен, что в большинстве случаев выпиваю от 2 до 6 чашек.
Уравнение 3 позволяет нам делать более точные утверждения о нашей уверенности в каком-либо событии. Представьте, что я прошу всех читателей этой книги запустить 400 раз колесо рулетки, ставя по 1 фунту на красное или черное. На рулетке 37 номеров: от 1 до 36, раскрашенные поочередно в красный и черный цвета, и особый зеленый 0 (зеро). Он обеспечивает преимущество казино. Например, если какой-то игрок ставит на красное, то вероятность попадания шарика на красный номер составляет 18/37, и в случае этого события игрок возвращает свою ставку и получает еще такую же сумму. Вероятность потери денег (непопадания шарика на красный цвет) составляет 1 – 18/37 = 19/37. Ожидаемый (средний) выигрыш игрока при ставке в 1 фунт составляет 1 ∙ 18/37 – 1 ∙ 19/37 = –1/37; поэтому при каждом повороте колеса игрок в среднем проигрывает 2,7 пенса. В уравнении 3 средний проигрыш обозначен буквой h, и в нашем случае h = –0,027 (фунтов). За 400 попыток каждый из читателей проиграет в среднем h ∙ n = 0,027 ∙ 400 = 10,8 фунта.
Следующий шаг – определить степень отклонения от среднего. Не каждый читатель проиграет (или выиграет) одну и ту же сумму. Даже без арифметических подсчетов понятно, что при одном обороте рулетки можно наблюдать большую разницу в результатах: если я ставлю 1 фунт, то либо удвою свои деньги, либо потеряю их. Отклонение имеет такую же величину, как инвестируемая сумма, и гораздо больше, чем средняя потеря в 2,7 пенса.
Определим отклонение количественно. Для этого найдем средний квадрат разности между результатом одного вращения и средним значением. Среднее значение равно –0,027 фунта, и если мы выиграли фунт, то квадрат разности равен (1 – (–0,027))2 = 1,0547, а если проиграли 1 фунт, то (–1 – (–0,027))2 = 0,9467. Всего есть 18 удачных исходов и 19 неудачных, поэтому средний квадрат разности, который обозначают σ2, равен:
Такой средний квадрат разности σ2 называют дисперсией. У рулетки она очень близка к единице, но не равна ей. Если бы на рулетке было только 36 номеров, половина красных и половина черных, дисперсия была бы в точности единица.
Дисперсия увеличивается пропорционально количеству вращений колеса. Если я запускаю колесо рулетки дважды, она удваивается; если три раза – утраивается и т. д. Дисперсия при n попытках равна n ∙ σ2.
Обратите внимание, что при вычислении дисперсии мы возводим разность в квадрат, поэтому ее размерность – фунты в квадрате, а не фунты. Чтобы получить снова фунты, можно извлечь из дисперсии квадратный корень и получить так называемое среднеквадратичное (стандартное) отклонение σ; в нашем случае σ = 0,9996. Соответственно, за 400 оборотов мы получим среднеквадратичное отклонение
Теперь у нас есть большая часть компонентов для уравнения уверенности. Единственный элемент, который мы еще не объяснили, – число 1,96. Оно появляется из математической формулы, которая описывает кривую нормального (гауссовского) распределения; эта колоколообразная кривая используется для представления роста людей или их IQ. Вы можете вообразить нормальное распределение в виде колокола с точкой максимума в среднем значении (например, при запуске рулетки 400 раз средний выигрыш будет 10,8 фунта; если мы станем измерять рост мужчин в Великобритании, то среднее значение будет 175 сантиметров)[40]. На рисунке 3 показана кривая нормального распределения для 400 запусков рулетки и ставок по 1 фунту.
Теперь представьте, что мы хотим найти интервал, который содержит 95 % площади этой колоколообразной фигуры.
Рис. 3. Нормальное распределение
Для 400 запусков рулетки это интервал, куда попадут 95 % прибылей или убытков читателей. Величина 1,96 берется именно отсюда. Чтобы интервал содержал 95 % наблюдений, его граничные значения должны в 1,96 раза превосходить среднеквадратичное отклонение. Иными словами, в нашем случае 95 %-й доверительный интервал для нашей прибыли после 400 запусков рулетки определяется уравнением 3:
После 400 запусков рулетки читатель в среднем потеряет 10,8 фунта. Печально. С другой стороны, ±39,2 определяет довольно широкий доверительный интервал, поэтому некоторые читатели преуспеют. Получившие прибыль игроки будут в явном меньшинстве – их всего 31,2 % от общего количества тех, кто крутил рулетку 400 раз. Я обращал на это внимание, когда ходил в казино или на скачки с небольшой группой людей. Обычно находится один человек, который выигрывает и остается в плюсе. Это ощущается как общая победа, особенно когда он покупает всем выпивку.
Итак, вот первый урок из уравнения уверенности. Победитель может считать, что у него была умная стратегия, а в реальности почти треть людей покидают казино победителями. Но случайность не должна их одурачивать. Они счастливчики, а не умельцы.
Я упустил важную деталь: сказал вам, что распределение результатов игры соответствует нормальному закону, но не объяснил почему. Объяснение восходит к работе Абрахама де Муавра 1733 года.
В своей первой книге «Доктрина шансов», посвященной азартным играм и опубликованной в 1718 году[41], де Муавр определял вероятность получения конкретных рук в карточных играх и выигрышных исходов при бросании костей – например, прихода двух тузов в пятикарточной руке или выпадения двух шестерок при бросании двух костей[42]. Он вел читателя через вычисления, предлагая упражнения для улучшения понимания. Советы именно такого рода просили у него игроки, искавшие его в кофейне Old Slaughter’s.
В работе 1733 года де Муавр спрашивал своих читателей, как вычислить результат подбрасывания симметричной монеты 3600 раз. Для двух бросков монеты вероятность получить подряд два орла нетрудно найти прямым умножением: Вероятность получить три орла при пяти бросках можно найти, если выписать все возможные варианты, когда выпадает три орла (и, соответственно, две решки):
ГГГРР, ГГРГР, ГГРРГ, ГРГРГ, ГРГГР, ГРРГГ, РГРГГ, РГГРГ, РГГГР, РРГГГ,
что дает нам 10 различных вариантов. Еще в 1653 году Блез Паскаль показал, что число способов взять k предметов из n (которое обозначается Cnk) определяется формулой:
Выражение k! которое называют факториалом, определяется так: k! = k ∙ (k – 1) ∙ (k – 2) ∙ … ∙ 2 ∙ 1. В нашем примере n = 5 (пять бросков монеты и их результатов), а k = 3 (три орла, которые должны оказаться среди этих результатов). Следовательно,
Получился тот же результат, что и при прямом переборе всех возможных вариантов. Поскольку вероятность выпадения орла на симметричной монете равна 1/2, то вероятность получить k орлов при n бросаниях монеты равна
Для n = 5 и k = 3 получаем
Следовательно, шансы на выпадение трех орлов при пяти бросках монеты равны 31,25 %.