[9]. На самом деле нет. Букмекеры всегда подправляют их, чтобы ситуация складывалась в их пользу. И вместо того, чтобы предложить 3/2, заявят, скажем, 7/5. И если вы не знаете, что делаете, букмекеры всегда выиграют, а вы проиграете. При коэффициенте 7/5 вы будете в среднем проигрывать 4 пенса на ставку в 1 фунт[10].
Единственный способ обыграть букмекеров – рассмотреть эти числа, и именно такие данные компьютер Яна собирал после того, как мы посидели в пабе. Он скачал коэффициенты и результаты для всех матчей чемпионатов мира и Европы, включая отборочные игры, начиная с чемпионата мира в Германии в 2006 году. Утром, усевшись в моем офисе в университете, мы начали искать преимущество.
Сначала мы загрузили данные и посмотрели на них в таблице, подобной нижеприведенной.
Из таких прошлых результатов мы можем получить представление о том, насколько точны коэффициенты: для этого надо сравнить два последних столбца вышеприведенной таблицы. Например, в матче между Испанией и Австралией на чемпионате мира 2014 года коэффициенты дают вероятность 73 %, что Испания выиграет, и она действительно победила. Это можно считать «хорошим» прогнозом. А вот Коста-Рика обыграла Италию, хотя коэффициенты давали 63 % на победу итальянцев, – «плохой» прогноз.
Я пишу слова «хороший» и «плохой» в кавычках, поскольку нельзя сказать, хорош или плох прогноз, если нет альтернативы, с которой его можно сравнить. Вот здесь и появляются α и β. Их называют параметрами уравнения 1. Это величины, которые мы можем менять для тонкой настройки нашего уравнения, чтобы сделать его точнее. Мы не можем изменить итоговые коэффициенты для матча Испания – Австралия и определенно неспособны повлиять на результат этого матча сборных; но можем выбрать α и β так, чтобы получить более точный прогноз, чем у букмекеров.
Метод поиска наилучших параметров – логистическая регрессия. Чтобы описать, как она работает, сначала посмотрим, как можно улучшить наш прогноз на матч Испания – Австралия с помощью корректировки числа β. Если я приму β = 1,2 и оставлю α = 1, получу
Поскольку результатом матча была победа Испании, прогноз на победу в 77 % лучше, чем прогноз букмекеров, который давал 73 %.
Но здесь есть проблема. Если я увеличу β, то повышу и прогнозируемую вероятность победы Англии над Уругваем – с 51 до 52 %. Но Англия в том матче 2014 года уругвайцам проиграла. Чтобы справиться с этой проблемой, я могу увеличить другой параметр, назначив α = 1,1 и оставив при этом β = 1,2. Теперь уравнение предсказывает, что Испания обыграет Австралию с вероятностью 75 %, а Англия обыграет Уругвай с вероятностью 49 %. Изменив исходные значения α = 1 и β = 1, мы улучшили прогноз на оба матча.
Я рассмотрел по одному изменению каждого из параметров α и β и сравнил результаты всего по двум матчам. Данные Яна включали 284 матча на всех чемпионатах мира и Европы с 2006 года. Потребовалось бы очень много времени, чтобы вручную менять значения параметров, подставлять их в уравнение и смотреть, улучшают они прогноз или нет. Однако мы можем использовать для вычислений компьютерный алгоритм; именно это и делает логистическая регрессия (см. рис. 1). Она меняет значения α и β так, чтобы дать прогнозы, которые максимально близки к реальным результатам матчей.
Рис. 1. Иллюстрация того, как логистическая регрессия дает оценки α = 1,16 и β = 1,25
Я написал программу на языке Python, которая выполняет все эти вычисления. Запустил ее и смотрел, как она справляется со всеми этими расчетами. Через несколько секунд у меня был результат: наилучшие прогнозы получались при α = 1,16 и β = 1,25.
Эти числа сразу привлекли мое внимание. Сам факт, что оба параметра α = 1,16 и β = 1,25 превосходят 1, показывал сложную связь между коэффициентами и исходами матчей. Проще всего понять эту связь путем добавления к нашей таблице еще одной колонки и сравнения нашей модели логистической регрессии с прогнозами букмекеров.
Здесь мы видим проявление известного опытным игрокам феномена с недооценкой записных фаворитов вроде Испании. Коэффициенты, которые букмекеры устанавливают для таких команд, как правило, занижены, поэтому на них стоит ставить. А более слабые фавориты, вроде Англии в 2014 году, бывают переоценены: их шансы на победу не так высоки, как предполагают коэффициенты. Хотя такие различия между прогнозами и моделью малы, мы с Яном и Мариусом знали, что их достаточно, чтобы получить прибыль.
Мы нашли небольшое преимущество для чемпионата мира. Еще не зная, будет ли это преимущество, замеченное на предыдущих чемпионатах, работать на новом турнире, мы были готовы рискнуть незначительной суммой. Чтобы реализовать систему ставок на основании моего уравнения, хватило времени до обеда. Мы нажали «Запуск» и привели систему в действие. В течение всего чемпионата мира наши ставки размещались автоматически.
После обеда вернулись ко мне домой. Мы с Мариусом уселись смотреть игру Уругвая с Египтом. Ян достал ноутбук и начал скачивать коэффициенты для тенниса.
Уравнение ставок – это не только один чемпионат мира и даже не только зарабатывание денег на букмекерах. Его настоящая сила в том, что оно заставляет нас смотреть в будущее с точки зрения вероятностей и исходов. Использование уравнения ставок означает следующее: надо отказаться от догадок и навсегда забыть идею, что результат футбольного матча, скачек, финансовой инвестиции, собеседования при приеме на работу или даже романтического свидания можно предсказать со стопроцентной уверенностью. Вы не можете знать наверняка, что произойдет.
Большинство из нас смутно осознают, что события в будущем во многом определяются случайностью. Когда прогноз погоды говорит, что завтрашний день будет солнечным с вероятностью 75 %, не следует слишком сильно удивляться, если по дороге на работу вы попадете под ливень. Однако нахождение небольших преимуществ, скрытых в вероятностях, требует более глубокого понимания.
Если для вас важен конкретный результат, то подумайте, с какой вероятностью он реализуется, а с какой нет. Недавно я разговаривал с CEO одного очень успешного стартапа, который вырос за счет четырех этапов многомиллионных долларовых инвестиций и в котором работает сотня сотрудников, и он радостно признавал, что шансы на долговременную прибыль для него самого и его инвесторов по-прежнему всего лишь 1 из 10. Он самоотверженно и долго работал, но сознавал, что все может внезапно развалиться.
При поиске работы мечты или любви всей жизни шансы на успех при каком-нибудь конкретном заявлении на работу или свидании могут быть весьма малы. Меня часто удивляет, что люди, не прошедшие собеседования, ругают себя за то, что поступили неверно, а не учитывают, что, возможно, в этот день кто-то из других четырех кандидатов сделал все верно. Помните, что до появления на собеседовании ваши шансы составляли 20 %. Пока вы не провалите примерно пять собеседований, нет особых причин беспокоиться о каком-то конкретном результате[11].
Вводить числа в романтику труднее, но здесь применимы те же вероятностные принципы. Не ждите, что на вашем первом свидании в Tinder появится принц или принцесса, но если вы сидите в одиночестве после неудачного свидания номер 34, то полезно поразмыслить над своим подходом.
Определив соответствующие вероятности, подумайте, как они соотносятся с размером ваших инвестиций и потенциальных прибылей. Мой совет мыслить вероятностно не попытка призвать к кармическому спокойствию или внимательности. CEO с шансами на успех один из десяти располагал бизнес-идеей, которая потенциально могла дать результат, подобный Uber или Airbnb: создать компанию стоимостью 10 миллиардов долларов. Даже десятая часть от этой суммы – миллиард, и это огромная ожидаемая прибыль.
Вероятностное мышление поможет вам быть реалистом перед лицом шансов, которые часто обращаются против вас. В скачках и футболе наивные игроки нередко переоценивают маловероятные события, но в реальной жизни мы склонны их недооценивать. Мы по природе осторожны и избегаем рисков. Помните, что награда после того, как вы получите действительно желательную работу или любимого человека, будет колоссальной. Это означает, что нужно быть готовым пойти на большой риск ради достижения цели.
Математика требует работы и упорства. Пять минут назад я закончил читать одну из самых примечательных работ в истории прикладной математики – статью, которая буквально стоит миллиард долларов. Я знал, что математика здесь важна, но, добравшись до уравнений, решил, что читать стало гораздо труднее. В первый раз я пропустил их, сказав себе, что вернусь к деталям позже, и перешел к интересным фрагментам.
Речь о статье Уильяма Бентера «Компьютерные системы прогнозирования и размещения ставок на скачках: отчет»[12]. Это своеобразный манифест, декларация о намерениях. И это работа человека, одержимого строгостью и верой в то, что он делает, который документировал свой план, прежде чем взялся его реализовывать, – чтобы показать всему миру, что он побеждает благодаря не удаче, а математической уверенности.
В конце 1980-х Уильям Бентер решил обыграть тотализатор скачек в Гонконге. До того как он начал свой проект, азартная игра с высокими ставками была уделом темных личностей, которые шлялись по ипподромам «Хэппи-Вэлли» и «Сатхинь» и по Гонконгскому жокей-клубу, пытаясь собрать инсайдерскую информацию у владельцев, персонала конюшен и тренеров. Они выясняли, завтракала лошадь или нет и была ли у нее дополнительная тайная тренировка. Они сходились с жокеями и расспрашивали их о стратегии в будущих скачках.
Будучи американцем, Бентер был в этом мире посторонним, однако он нашел другой способ получить инсайдерскую информацию – тот, который жучки упустили, хотя он прятался прямо здесь, в помещениях жокей-клуба. Бентер собрал копии справочников-ежегодников с результатами забегов и нанял двух женщин, чтобы вводить эти данные в компьютер. Затем было то, что журнал Bloomberg Businessweek назвал прорывом. Он взял коэффициенты ставок, также имевшиеся в жокей-клубе, и их оцифровал. Именно они позволили Бентеру применить метод, аналогичный тому, что я показывал Яну и Мариусу: использовать уравнение ставок. Это был ключ к нахождению неточностей в предсказаниях игроков и прогнозистов