Чтобы уловить суть природы энергии, нам необходимо понять две очень важные вещи, касающиеся событий и процессов в мире. Одна касается характеристик движения тел в пространстве; другая — природы теплоты. Описание движения в пространстве было в основном завершено к концу семнадцатого столетия. Потребовалось на удивление долгое время, чтобы сразиться с природой тепла и в конце концов одержать победу. Этой цели не удавалось достигнуть до середины девятнадцатого века. Как только движение и тепло были поняты, ученые успешно расправились и с природой событий. Или так они в то время думали.
Греки размышляли о движении тел, хотя и без всякой пользы, и две тысячи лет держали мир в заблуждении: их стиль вопрошания из кресла гораздо лучше подходил для математики и этики, чем для физики. Так, Аристотель (384-322 до н.э.) умозаключил, что стрела удерживается в полете действием воздушных вихрей, создаваемых ею, и поэтому сделал вывод, что в вакууме стрела должна быстро остановиться. Как это часто бывает, наука проясняет вопрос, превращая общепринятое мнение в противоположное, и мы теперь знаем, что верно в точности обратное: сопротивление воздуха замедляет движение стрелы, а не толкает ее вперед. Свидетельств о необходимости поддерживающей силы в те тяжкие времена было множество, ибо рогатому скоту приходилось напрягаться, чтобы удерживать в движении скрипучие деревянные повозки. Абсурдно было бы думать обратное, ведь тогда селянам пришлось бы запрягать рогатый скот позади движущейся телеги, чтобы остановить ее естественное движение. Изобретательный ум Аристотеля увидел в воздухе вихри, толкающие стрелу вперед и тем самым спасающие его теорию.
Аристотель имел и более общие иллюзии относительно причины событий и движения объектов. Как феноменологические рассуждения, его иллюзии были вполне осмысленными, и он заслуживает восхищения за непрестанный поиск объяснений и выпытывание у Природы ответов. Однако, помимо абсолютной ложности, его мнения были лишены того, что мы сегодня называем объяснительной силой, и совершенно не поддавались переложению на язык цифр. Например, он представлял себе ряд концентрических сфер со сферической Землей в центре, окруженной последовательно сферой воды, сферой воздуха и сферой огня, а все это в целом заключено в хрустальные сферы небес. В его модели вещество искало свое природное место, так, первоначально подброшенные кверху земные объекты падали на Землю, а языки пламени рвались наверх, стремясь к своему природному обиталищу. Легко отыскать дыры в этой модели с нашей современной точки зрения, но она владела умами людей на протяжении двух тысячелетий, возможно, потому, что люди находились во власти традиции, требовавшей учиться у авторитетов, не полагаясь на собственные наблюдения, или, может быть, потому, что в упражнениях своей любознательности им недоставало мужества, необходимого для того, чтобы противопоставить наблюдения авторитету.
Главным вкладом Галилея в эту конкретную историю было то, что он сбросил с глаз повязку авторитетных мнений и, с открытыми для наблюдений глазами, продемонстрировал ложность аристотелевой версии событий. Галилей постулировал, что если тело не подвергается действию силы, то оно сохраняет состояние своего движения. Он пришел к этому заключению, наблюдая скатывание шара по наклонной плоскости и последующее вкатывание на противоположную плоскость, и заметив, что, каков бы ни был угол наклона второй плоскости, шар подымается на одну и ту же высоту. Он заключил, что, если бы вторая плоскость была горизонтальной, шар катился бы вечно, поскольку никогда не достиг бы первоначальной высоты. Введение наклонной плоскости было само по себе гениальным приемом, поскольку оно замедлило процесс падения тела до такой степени, что его стало возможно изучать количественно и с большой точностью, и таким образом представление открыло путь наблюдению.
Это заключение Галилея стало поворотным пунктом в науке, поскольку оно подчеркнуло силу абстракции и идеализации, о которых я упомянул в Прологе, причем последняя дала возможность пренебречь побочными факторами, затемняющими суть эксперимента. Конечно, Галилей никогда явно не демонстрировал, что шар будет вечно катиться и катиться, и в любом эксперименте этого рода реальный шар на деле рано или поздно остановится, очевидно и несомненно следуя Аристотелю. Однако Галилей понял, что бывают существенные компоненты поведения с одной стороны и побочные влияния с другой. Последние включают трение и сопротивление воздуха: уменьшая их (например, полируя шар и поверхности плоскостей), он мог приблизиться к идеальной ситуации и выявить суть поведения шара. В мире аристотелевского опыта, где рогатый скот тяжко топает по грязи, таща тяжелые повозки, побочные влияния полностью затопили суть поведения повозки.
Факел Галилея перешел к Ньютону. В соответствии со старым календарем Исаак Ньютон[11] (1642-1727) родился в год смерти Галилея (рис. 3.1), так что романтически настроенные любители признаков реинкарнации могут усмотреть здесь переселение души. В отличие от Галилея, Ньютон по всем описаниям был весьма сварливым и вздорным человеком, но он также был одним из величайших ученых. Почти в одиночку он привел математику на службу физике и таким образом открыл дорогу для современной количественной физической науки. Он сделал больше, он изобрел математику, которая была ему нужна для осуществления его программы, и его Principia[12], опубликованные в 1687 г., являются памятником мощи человеческого интеллекта, приложенного к решению проблемы рационализации наблюдений.
Рис. 3.1. Ньютон и современная физика родились в этой комнате утром в день Рождества 1642 г. Мебель не является подлинной.
Пять аксиом Эвклида для формулирования геометрии, которую мы исследуем в главе 9, полностью задают структуру пространства, и с их помощью мы узнаем, где мы находимся. Три закона Ньютона полностью задают движение в этом пространстве, и с их помощью мы узнаем, куда мы направляемся. В немного упрощенном виде они выглядят так:
1. Тело продолжает равномерное движение по прямой линии, если оно не подвергается действию силы.
2. Ускорение тела пропорционально приложенной силе.
3. Каждому действию всегда противостоит равное противодействие.
Из этих трех простых утверждений вырастает все здание классической механики, как называется описание движения, основанное на законах Ньютона, а также понимание и предсказание движения частиц, снарядов, планет, а в наши дни также спутников и космических кораблей.
Первый закон Ньютона есть простое повторение формулировки анти-аристотелевского наблюдения Галилея, и иногда его называют законом инерции.
Его второй закон обычно считают самым полезным из трех, поскольку он позволяет нам рассчитать путь частицы через область, где действует сила. Там, где сила толкает сзади, мы ускоряемся в том же направлении; когда она толкает спереди, мы тормозимся. Если сила толкает сбоку, мы поворачиваем в том направлении, куда она вынуждает нас двигаться.
Сам закон записывается в форме:
Сила = масса × ускорение,
где масса (более специальный термин — инерционная масса) является мерой сопротивления частицы действию силы. Для заданной силы ускорение велико, если масса мала, но если масса велика, то ускорение мало. Другими словами, высокая инерционная масса дает низкий уровень отклика, и наоборот. Острый глаз заметит тавтологию в этом законе, поскольку он определяет массу в терминах силы, а силу в терминах массы.
Поскольку ускорение является скоростью, с которой меняется скорость, мы можем, по-видимому, оценить по достоинству то, что внутри второго закона Ньютона зарыта возможность предсказания пути частицы, подвергающейся действию силы, которая может меняться от места к месту и принимать разные значения в разные моменты времени. «Зарыта» — термин, подходящий к этому случаю, поскольку расчет путей может оказаться весьма мудреным упражнением, более похожим на эксгумацию, чем на алгебру. Тем не менее это можно проделать для ряда простых случаев; но даже для сложных полей сил, таких, которые возникают возле двойной звезды, за эту задачу можно браться, используя компьютеры (рис. 3.2). Говоря короче, мы можем интерпретировать второй закон как утверждение, что, если мы знаем, где находится частица, или даже группа частиц, в данное время, мы можем в принципе предсказать, где ее найти и куда она будет двигаться в любое более позднее время. Предсказания таких точных траекторий представляют собой одно из достижений, прославивших классическую механику.
Рис. 3.2. Орбиты космических кораблей, рассчитанные с помощью механики Ньютона. Вычисления являются сложными, поскольку космические корабли подвергаются влиянию планет. Верхняя диаграмма показывает пути Вояджера 1 и Вояджера 2, начавших свои полеты в 1977 г. и функционирующих до сих пор. Вояджер 1, самый удаленный объект во Вселенной, сделанный человеком, покидает Солнечную систему со скоростью 3,6 а.е. в год (1 а.е., одна астрономическая единица представляет собой средний радиус орбиты вращения Земли вокруг Солнца и соответствует примерно 150 миллионам километров), под углом 35 градусов к плоскости планетарных орбит. Вояджер 2 также уходит из Солнечной системы со скоростью около 3,3 а.е. в год, под углом 48 градусов к этой плоскости, но в противоположном направлении. Нижний график показывает приращения скорости космических кораблей, когда они облетали каждую из планет. Эти поддержанные гравитацией приращения гарантируют, что скорость кораблей достаточна, чтобы они могли достичь своих целей, а затем покинуть Солнечную систему.
Третий закон Ньютона более глубок, чем выглядит. На первый взгляд кажется, что из него следует лишь то, что если бита прилагает силу к мячу, то мяч прилагает равную и противоположную силу к бите. Мы, разумеется, можем чувствовать силу, приложенную к мячу, когда мы ударяем по нему битой или пинаем его ногой. Однако подлинная значимость третьего закона состоит в том, что из него следует закон «сохранения». А сохранение это как раз та тема, которой посвящена вся эта глава, так что теперь мы начинаем подбираться к намеченной жертве. Однако сначала нам следует нем