Обучение по двум направлениям следует вести параллельно и постепенно.
Дети не всегда понимают, что значит «задать вопрос», «спросить», а это важно при формулировке задачи. Поэтому следует учить детей выделять в речи вопросительное предложение и задавать вопрос. Нарисуйте на небольших карточках знаки вопроса и раздайте их детям. Объясните на примерах, что значит «спросить», «задать вопрос», а потом назовите вперемешку несколько утвердительных и вопросительных предложений, попросив поднимать знак вопроса, когда прозвучит вопросительное предложение. (Детям лучше говорить: «Когда я буду о чем-то спрашивать».)
Процесс решения задач требует от детей умения ориентироваться во временной последовательности действий: было, есть, будет. Некоторым детям это понять трудно. Прочитайте дошкольникам сказку с последовательно происходящими событиями, например «Теремок», и попросите их разложить по порядку заранее подобранные к ней сюжетные картинки. Затем выберите какую-нибудь картинку, например с изображением лисички, подходящей к теремку, и предложите детям рассказать, что происходило до момента, изображенного на картинке, что – после и в какой последовательности. При этом следите за правильностью выбора глагола для описания какого-либо события, согласованности его с временем действия, отображенного на картинке.
После этого можно перейти к подготовительному этапу: ориентировке в математических отношениях и обозначению величин полосками «часть – целое». Покажите детям яблоко, скажите, что оно целое и что для него подходит большая полоска– «целое». Разрежьте яблоко на две части, лучше неравные, каждую из них назовите «часть». Объясните, что любой кусочек яблока можно обозначить полоской «часть». Соедините дольки яблока и покажите, что опять получилось целое. Таким образом, вы продемонстрируете, что соединение частей дает целое, а вычитание части из целого дает часть. То же самое можно показать на примере с букетом цветов. Поставьте в вазу девять цветков, затем пять переставьте в другую вазу. Сопровождайте действия такими же объяснениями, как в случае с яблоками.
Проделав описанные выше упражнения, можно переходить непосредственно к математическим задачам. Например: «На ветке сидели 5 воробьев, 2 воробья улетели. Сколько воробьев осталось сидеть на ветке?» Расскажите детям, что в задаче есть условие – «Сидели 5 воробьев, 2 улетели» и вопрос – «Сколько воробьев осталось сидеть?». Если не зафиксировать на этом внимание детей, то, повторяя задачу, они будут останавливаться только на пересказе условия.
Теперь нужно обозначить полосками величины, о которых говорится в задаче. Сначала воробьев было 5, потом их стало меньше, значит, то, что было сначала, это целое (большая полоска – «целое»). Улетели не все воробьи, а только часть (маленькая полоска – «часть»). Дальше следует записать условие и вопрос задачи полосками. Итак, «сидели 5 во-робьев» – ставим большую полоску, «улетели»… – ставим знак «минус» (детям говорим, что он обозначает «отнять», «уменьшить»), «улетели 2» – ставим маленькую полоску. «Целое минус часть получается.» – ставим знак равенства, «получится что» – ставим вопросительный знак. Запись условия задачи и вопроса при помощи полосок выглядит так, как показано на рисунке 88. Прочитать ее можно следующим образом: от целого отнять часть, получится что? Далее вопросительный знак меняем на полоску («часть») и получаем решение задачи в виде модели: от целого отнять часть получится часть.
Рис. 88Затем следует записать условие и решение задачи цифрами. По окончании работы обязательно уточните ответ (3 воробья) и процесс ее решения (от пяти отнимали два).
Таким образом, процесс решения арифметических задач состоит из следующих этапов: 1) повторение задачи (формулировка условия и вопроса задачи); 2) запись условия и вопроса задачи полосками и знаками; 3) формулировка ответа задачи с использованием терминов «часть – целое», выделение ответа задачи, запись решения и ответа в виде модели; 4) запись условия вопроса, решения и ответа знаками; 5) запись условия вопроса, решения и ответа цифрами.
Если при решении прямых задач («Сидели 5 птиц, улетели 3. Сколько осталось?» или «Сидели 2 птицы, прилетели 2. Сколько стало?») запись условия и решения практически совпадают, то при решении косвенных задач («Сидело несколько птиц, 3 прилетели, стало 5. Сколько сидело птиц?» или «Сидели 6 птиц, несколько улетело, осталось 2. Сколько птиц улетело?») запись условия и решения будет отличаться. Поэтому важно, чтобы дети хорошо ориентировались в математических отношениях , представленных в задаче. Решение косвенных задач в форме моделей– сложный процесс для дошкольников. Использование моделей для обучения решению арифметических задач можно рекомендовать, если дети хорошо ориентируются в математических отношениях.
Следующий этап – составление арифметических задач по модели (рис. 89).
Рис. 89Вы можете получить множество вариантов задачи, но главное, что для любого из них подходит одна и та же запись в виде полосок. Может оказаться, что одно и то же число у одного ребенка будет целым, а у другого частью. Обратите на это внимание. Важно не само число, а его соотношение с другими. Обсудите вместе с детьми, почему в одном случае – это часть, а в другом – целое.
В процессе составления задач у детей часто возникают трудности в выборе глагола, связанного с арифметическим действием. Следите за тем, чтобы глагол соответствовал требуемому арифметическому действию. Так, действие сложения связывается в речи с глаголами будет, станет, стало, действие вычитания – с глаголами осталось, досталось, сохранилось и т. д.
Можно предложить детям придумать задачу по картинке. Покажите, например, картинку, на которой изображено 8 чашек (3 нарисованы чуть в стороне от 5). Такое изображение даст возможность придумать задачу как на сложение («Было 5 чашек, купили еще 3. Сколько стало чашек?»), так и на вычитание («Было 8 чашек, 3 чашки разбились. Сколько чашек осталось?»).
Или расскажите детям историю: «Пять девочек собирали ягоды в лесу. Две набрали полные корзинки и решили пойти домой…» Затем предложите придумать задачу. Детям труднее сориентироваться, если рассказ не содержит количественных данных. Например: «Мальчики соревновались в прыжках в высоту, потом пришли девочки, и они стали прыгать вместе». В качестве подсказки можно использовать два любых числа, и с ними уже придумывать задачи по рассказу.
Придумывание задач по рассказу, сопровождаемое записью с помощью полосок и знаков, развивает у детей обобщенные представления о соотношении целого и частей. После того как решение задач будет записано с помощью полосок, спросите, подходит ли эта запись к другим задачам. Сравните задачу, придуманную каждым ребенком, с записью в виде полосок.
Обучение детей решению и составлению арифметических задач может вестись параллельно. Советуем чередовать задания на решение задач с заданиями на составление их по картинке или рассказу с заданными числами. Придумывание же задач по рассказу, не содержащему количественных данных, лучше отложить до момента, когда дети будут хорошо ориентироваться в математических отношениях, уметь записывать их при помощи полосок, а также выделять необходимые компоненты задачи: условие, вопрос, решение, ответ.Научившись выделять в задаче условия и вопрос, обозначать в виде модели математические отношения, формулировать ответ задачи, указывать, какое арифметическое действие выполнено для ее решения, дети будут сами решать и придумывать арифметические задачи. Все это, безусловно, скажется на развитии познавательных способностей, так как дети смогут применять усвоенные знания в ситуациях, содержащих уже не арифметические, а познавательные задачи.
Таким образом, обучение детей выделению количественных отношений, развитие представлений о числе и числовом ряде, о составе чисел от 3 до 10, обучение решению и придумыванию арифметических задач будет способствовать развитию у них элементарных математических представлений. Использование в обучении различных наглядных моделей (пересекающихся кругов или овалов, «дорожек», полосок разного размера и т. д.), с одной стороны, даст возможность сделать представления детей обобщенными (то есть позволит использовать их не только в тех ситуациях, которые встречались в процессе обучения, но и для гораздо более широкого круга математических задач), а с другой стороны, научит выделять существенные для каждой познавательной задачи признаки, устанавливать между ними различные отношения, выполнять необходимые умственные действия, то есть разовьет умственные способности дошкольников.
Немного о логике
Перед школой детей довольно часто много упражняют в выполнении логических задач, чтобы они умели логически рассуждать, анализировать, обобщать, делать правильные выводы и т. п. И в большинстве случаев, если дети ошибаются, взрослые не понимают, как они не «видят очевидное». Если вспомнить один из фактов, впервые описанный психологом Ж. Пиаже, то можно понять недоумение взрослых. Детям показывают картинку, на которой нарисованы, например, три яблока и шесть груш, и спрашивают, можно ли назвать изображенные предметы одним словом и каким. Дети узнали и яблоки, и груши, смогли дать общее название (фрукты), определили, что груш больше. Однако если спросить, чего больше: груш или фруктов, большинство дошкольников скажут, что груш больше. В чем же проблема? Дети дошкольного возраста ориентируются, прежде всего, на то, что они видят, ведь в этом возрасте у них развивается образное мышление. Дошкольники еще не владеют рассуждениями, приводящими к правильному выводу. Как могло бы строиться рассуждение при решении приведенной выше задачи? Примерно так: «Груши и яблоки – это фрукты. Фруктов больше, чем груш, ведь фрукты – это и груши, и яблоки». Но чтобы сделать такой вывод, детям необходимо ориентироваться в сложных понятийных отношениях.
На протяжении дошкольного детства дети начинают использовать различные обобщения, например слова: