Девять цветов радуги — страница 14 из 56

Теперь мы можем подойти к решающему этапу исследования фотоэффекта.

Что произойдет, если фотокатод освещать не белым светом, представляющим собой смесь лучей с различными длинами волн, а монохроматическим, то есть таким, в котором световые волны имеют практически одну и ту же длину?

Мы сами не сумеем провести опыт, отвечающий на подобный вопрос. Для такого опыта требуется очень сложное и дорогое оборудование, какого, конечно, не найти в школьном физическом кабинете. Но это не столь важно, потому что этот опыт проделывался учеными неоднократно.

К тому времени, когда он был проведен впервые, волновая теория света уже около девяноста лет прочно удерживала свои позиции. За эти годы сменилось не одно поколение физиков, и все они не сомневались в ее абсолютной достоверности, так как любые открытия в области оптики всегда удавалось правильно истолковать на основе волновых представлений. Каково же было удивление и даже недоумение ученых, когда они узнали о результатах исследования фотоэффекта при монохроматическом освещении! Они противоречили тому, что до сих пор не вызывало ни у кого сомнения.

Прежде всего оказалось, что свет не всякой длины волны выбивает электроны из фотокатода. Электроны покидали его тем охотнее, чем короче была волна падающего света.

Подавая на анод фотоэлемента отрицательное напряжение разной величины, удалось выяснить, что энергия вылетевших электронов, а следовательно, и их начальная скорость, остается неизменной при изменении интенсивности света и зависит только от длины волны. Чем больше синели лучи света, то есть чем короче была волна падающего света, тем большим нужно было устанавливать отрицательное напряжение на аноде, при котором полностью прекращался фототок. И, наоборот, чем длиннее были волны падающего света, тем меньшей оказывалась энергия освободившихся электронов. Более того, когда длина волны падающего света возрастала до некоторой величины, фотоэффект прекращался, как бы ни увеличивали при этом поток падающего света, как бы ни повышали положительное напряжение на аноде. Предельная длина волны, при которой прекращается фотоэффект, называется красной границей фотоэффекта. Она различна для разных веществ. Пришлось немало потрудиться, для того чтобы повысить красную границу, отодвинуть ее дальше, в область длинных световых волн. В наши дни созданы такие типы фотокатодов, которые имеют красную границу на длине волны 1,2–1,6 микрона.

На основании волновой теории следовало, что энергия выбитых светом электронов должна возрастать при увеличении светового потока. Опыт же показывает иное: при увеличении светового потока растет не энергия выбитых из фотокатода электронов, а их число. Энергия покинувших фотокатод электронов становится тем большей, чем короче длина волны падающего света.

Открыв фотоэффект, ученые вновь оказались вынужденными обратиться к основам физической оптики, искать ответа на самый главный вопрос: «Что же такое свет?»

Вместо паузы

Перед окончанием главы сделаем небольшую передышку, оглянемся на прочитанное и вспомним главное из того, что нам стало известным о свете.

1. Развитие оптики до Ньютона.

На этом этапе еще не было создано сколько-нибудь достоверных теорий света. Не было накоплено и достаточного количества фактов, хотя уже были созданы такие оптические приборы, как линзы, вогнутые зеркала и даже микроскопы и телескопы.

Гримальди опубликовал свой труд, в котором не было сформулировано глубоких теоретических положений, но зато впервые, в очень приближенной форме, были упомянуты явления дифракции и интерференции.

2. Ньютон.

Его работы явились целой эпохой в оптике. Он открыл новые факты и на основании их сформулировал очень важные законы оптики и создал первую подлинно научную теорию света. В соответствии с этой теорией, свет представляет собой частицы материи особого рода — корпускулы.

Эта теория достаточно хорошо объясняла все известные факты, за исключением явления, открытого самим Ньютоном, называемого кольцом Ньютона (и, конечно, интерференции и дифракции, которых Ньютон не знал).

3. Гюйгенс.

Определение скорости света Рёмером.

Гюйгенс создал свою теорию немногим позже Ньютона. В соответствии с теорией Гюйгенса, свет не является материальным телом, а представляет собой волны, распространяющиеся в материи особого рода — в мировом эфире.

4. Господство корпускулярной теории.

Теория Гюйгенса могла объяснить все известные в то время факты, в частности явление колец Ньютона. Однако после смерти Ньютона и Гюйгенса господствует корпускулярная теория.

5. Господство волновой теории.

В начале 1800-х годов волновая теория одерживает полную победу, объяснив явления интерференции и дифракции. Существование эфира везде признано, хотя ученые не смогли поставить ни одного опыта, который позволял бы непосредственно обнаружить эфир. Главным свидетельством в пользу эфира являлся факт распространения световых волн.

Последние десятилетия XIX и начало XX столетия были отмечены целым рядом важнейших открытий в физике, в частности в оптике.

Теоретические труды Максвелла и опыты Герца позволили установить электромагнитную природу световых волн. Столетов сформулировал законы фотоэффекта. Планк, объясняя законы излучения черного тела, пришел к выводу, что энергия света не излучается непрерывно, а только определенными порциями, зависящими от длины волны излучения. Эти порции он назвал квантами. Дальнейшее изучение фотоэффекта привело к неожиданному открытию: энергия (скорость) фотоэлектрона, выбитого светом из металла, не зависит от интенсивности света, а только от длины волны падающего на фотокатод света. Чем короче волна падающего света, тем больше энергия (скорость) электрона.

Последнее открытие противоречило волновой теории света.

После кризиса

В конце прошлого и начале нашего столетия были сделаны не только перечисленные открытия. В эти годы количество новых фактов, собранных физиками, было особенно велико. Многие новые факты имели не только частное значение, а затрагивали основы наук.

Здесь не стоит перечислять открытия тех времен. Достаточно лишь сказать, что они положили начало современному расцвету физики. Казалось бы, эти открытия должны были вдохновлять ученых на новые, еще более энергичные поиски. И, конечно, так оно и было. Но в то же время все оказывалось очень трудным и сложным.

Новые открытия не укладывались в рамки детально разработанных, проверенных жизнью, признанных всеми теорий — тех теорий, которые многие ученые считали незыблемыми и даже абсолютно верными. И вот на их глазах эти теории рушились. Многие ученые считали, что новые факты не оставляют камня на камне даже от величественного здания классической механики. И некоторые из ученых, видя происходящее, но не умея правильно объяснить его, высказывали даже мнение, что верную теорию вообще невозможно создать, что все и всяческие теории, как бы хороши они ни были, не что иное, как порождение нашего ума, и совершенно не отражают и принципиально не могут правильно отражать явления окружающего нас мира.

Это было «смутное время», и его принято называть кризисом физики.

Когда вы будете изучать книгу В. И. Ленина «Материализм и эмпириокритицизм» и особенно главу «Новейшая революция в естествознании и философский идеализм», вы увидите, сколь глубоким был этот кризис, какой болезненной оказалась ломка старых представлений в сознании многих физиков.

К счастью, все выдающиеся ученые обладают очень важным свойством; его можно назвать одним словом — бесстрашием. Бесстрашием перед фактами, каковы бы они ни были. И это свойство неизбежно приводило большинство из них к правильным выводам, которые помогали им выходить из самых трудных положений и развивать науку. При этом они сознательно, а иногда не отдавая себе отчета, принимали единственно верную философскую основу науки — материализм.

Именно поэтому было преодолено временное смятение, постигшее физиков во время кризиса. И, когда оно осталось позади, стало ясно, что в физике совершилась подлинная революция.

Максвелл закончил свой знаменитый «Трактат» в 1873 году. В нем он доказал, что свет представляет собой электромагнитное явление. Но это было далеко не все. Хотя сам Максвелл, создавая свою теорию, исходил из того, что эфир существует, эта теория не являлась доказательством его существования. Она оставалась справедливой и в том случае, если считать, что для распространения света не требуется никакой промежуточной среды, потому что одним из свойств электромагнитных колебаний является их способность поддерживать самих себя и благодаря этому распространяться в абсолютной пустоте. Иными словами, можно было отказаться от гипотезы о существовании эфира. Однако даже самому Максвеллу эта сторона его теории была не вполне ясна.

Теоретические положения Максвелла удалось подтвердить прямым экспериментом только в 1888 году. Но уже гораздо ранее, в 1881 году, гипотезе о существовании эфира был нанесен первый сокрушительный удар.

То, что теория Максвелла остается справедливой и при отказе от эфира, физики поняли не сразу и продолжали верить в существование эфира. В числе их были голландский физик Гендрик Антон Лоренц (1853–1928) и Герц. Тот самый Герц, которому суждено было через несколько лет первым подтвердить правильность электродинамики Максвелла. И Герц и Лоренц создали свои теории, объяснявшие взаимодействие электромагнитных колебаний и эфира. Основным различием этих теорий было следующее: Герц считал, что движущиеся материальные тела увлекают за собой эфир, а Лоренц был сторонником неподвижного, неувлекаемого эфира.

Теория Герца не получила широкого распространения, потому что к моменту ее создания были известны уже проверенные опытные данные, опровергавшие ее. Что же касается теории Лоренца, то она была более совершенной и не расходилась с известными в то время опытными данными. Однако ее следовало проверить в самом главном. Она утверждала, что скорость света будет различной в случае, если свет излучается в направлении, совпадающем с движением Земли в пространстве, и в случае, когда направление света перпендикулярно этому движению.