Девять цветов радуги — страница 26 из 56

Трехкомпонентная теория цветного зрения существует без принципиальных изменений так долго потому, что до сих пор она оказалась в состоянии объяснить практически все известные факты, и потому, что великолепно оправдала себя на практике.

Кроме того, до недавней поры не знали о сколько-нибудь серьезных фактах, объяснить которые оказалось бы не под силу этой теории. То есть необходимости в пересмотре ее до последнего времени не возникало. Но в пятидесятые годы были открыты новые факты.

Что же это за факты?

Прежде всего, это — отсутствие твердых доказательств о наличии в глазу трех цветочувствительных приемников, на предположении о существовании которых основывается трехкомпонентная теория. Уже в течение многих лет пытаются отыскать их в глазу. Доподлинно известно, что на цвет реагируют колбочки. Поэтому имелось предположение, что не все колбочки одинаковы, а делятся на три типа: одни чувствительны к красным, другие — к зеленым, третьи — к синим лучам. Но не все ученые так думали, некоторые считали, что все колбочки одинаковы, но в них существуют некие центры или некие химические процессы, по-разному реагирующие на разные цвета.

Для проверки подобных предположений ставились и ставятся многочисленные опыты. Их результаты часто бывали очень противоречивыми. И временами казалось, что доказательства о существовании трех видов цветочувствительных приемников уже в руках ученых. Но на поверку все выходило не так просто. И в настоящее время многие исследователи не склонны считать, что существующие гипотезы — по крайней мере, в том виде, как они формулируются теперь, — являются верными. Более того, в результате исследований последних лет возникли серьезные сомнения в самой природе восприятия света с помощью зрительных пигментов (иодопсина, родопсина). Сейчас некоторые ученые высказывают даже предположения о том, что фотохимическая теория зрительных процессов в глазу может оказаться неверной.

Уже много лет ученым известно очень простое устройство или, скорее, забавная игрушка с удивительными свойствами. Устройство это называется диском Бенхема и представляет собой круг, закрашенный до половины в черный цвет; на второй половине круга по белому полю расположены черные парные дуги разных радиусов. Подобный диск помещен в приложении к книге[19]. Вырежьте его, наклейте на кусок картона и сделайте из него волчок.

Раскрутив диск Бенхема, вы увидите неожиданное явление. Черно-белый диск становится вдруг цветным. На его поверхности появляются цвета. Они слабые и ненасыщенные, но все же хорошо заметны. Цвета эти непостоянны. По мере того как обороты диска падают, они меняются[20].

Несколько лет назад английские специалисты в области телевидения, видимо основываясь на этом же явлении, провели очень интересный опыт. Однажды во время передачи английские телезрители увидели на экранах своих приемников торговую рекламу бульонных кубиков. Это было неподвижное изображение с очень простыми формами. На него вряд ли обратили бы внимание, если бы это изображение не оказалось цветным. Цвета были блеклые, но явственно заметные. Это привлекло всеобщее внимание — ведь телевизоры были не цветными, а обычными.

Любая полная научная теория должна объяснять все известные науке факты, относящиеся к какой-либо области. Это справедливо и по отношению к общепринятой теории цветового зрения. Она тоже должна была бы объяснить действие диска Бенхема и опыт английских инженеров. Однако, по крайней мере в настоящее время, она не дает такого объяснения. Можно, конечно, считать явление цветов в диске Бенхема частным, нехарактерным случаем, потому что практически на наш глаз всегда действует постоянный свет, а от этого диска приходит свет пульсирующий. Но такой ответ может удовлетворять науку лишь до определенной поры, пока таких частных случаев мало, пока не появляется хотя бы один существенно важный.

И если бы такой важный факт не стал известен, то подобной неопределенной ссылкой на частный и нехарактерный случай пришлось бы закончить главу о зрении. Но в самом начале 1959 года в науке о цвете, спокойно развивавшейся на основе классической теории в течение многих десятилетий, случилось событие огромной важности.

На одном из заседаний Национальной академии наук США выступил физик Эдвин Лэнд. Тот самый Лэнд, который за десять лет до того изобрел быстрый фотографический процесс, применяемый теперь в некоторых фотографических камерах, и в частности в фотоаппаратах «Момент». В этот раз Лэнд докладывал о некоторых опытах по теории цветового зрения, которые он проводил со своими сотрудниками в течение нескольких лет. Результаты опытов столь интересны, что, по крайней мере, об одном из них стоит подробно рассказать.

Для осуществления опыта была сконструирована специальная сдвоенная фотографическая камера. От обычной она отличается тем, что световой поток, прошедший через объектив, с помощью особого устройства делится на два, из которых каждый падает на отдельную фотопластинку. Изображения на обеих пластинках получаются абсолютно одинаковыми, так как объектив общий и фотографирование на обе пластинки производится в одно и то же время.

Сдвоенная фотокамера (сверху) и сдвоенный проектор Лэнда. В фотокамере с помощью специальной системы призм, установленных позади общего объектива, создается два одинаковых изображения. Для того чтобы осуществить цветоделение, перед пластинками установлены светофильтры. Изображения проектируются и совмещаются на общем экране. В проекторе имеются два независимых объектива.


Но есть и различие. Оно состоит в том, что на пути каждого из световых потоков ставятся разные светофильтры. Один из них пропускает лучи света с длинами волн больше 585 миллимикронов, то есть оранжевые и красные. А другой — только лучи с волнами короче 585 миллимикронов, то есть частично желтые и полностью зеленые, голубые, синие и фиолетовые[21].

С полученных в этой камере негативов были отпечатаны диапозитивы. Назовем диапозитив, полученный от негатива, снятого в оранжево-красном свете, длинноволновым, а другой — коротковолновым. Представим себе, что натурой для этих фотографий послужил букет красных георгинов в синей вазе. Если внимательно вглядеться в диапозитивы, мы увидим, что формы предметов на них абсолютно одинаковы, но гамма серых цветов различна. На длинноволновом диапозитиве цветы будут совсем светлыми, а листья и ваза темными. Зато на коротковолновом диапозитиве цветы кажутся почти черными, а листья и ваза светлыми. Промежуточные цвета натуры дадут нам на обоих диапозитивах различные серые цвета.

Такие негативы и диапозитивы называются цветоделенными и сами по себе не представляют новинки в практике цветной фотографии и цветной печати. Правда, обычно снимаются три негатива через три светофильтра: красный, зеленый, синий. Не ново и то, что делали Лэнд и его сотрудники дальше. Они вставляли оба диапозитива в сдвоенный проекционный аппарат и точно совмещали оба изображения на белом экране. При этом получалось черно-белое изображение.

Но не оно интересовало ученых. Они проектировали изображение с полученных диапозитивов в различных цветах: коротковолновый проектировался через тот же самый коротковолновый светофильтр, а длинноволновый— через длинноволновый светофильтр.

Но (это и есть самое главное) ученые задались таким вопросом: что произойдет, если оставить только один из светофильтров?[22]

Ответ же оказался поистине поразительным. Когда Лэнд убрал коротковолновый светофильтр (на это понадобились всего секунды!), картина на экране осталась многоцветной! Гамма цветовых тонов была не столь богатой, как в натуре, но глаза отчетливо различали разнообразные цветовые тона и оттенки.

Что же изменилось, когда Лэнд убрал коротковолновый светофильтр?

Только одно — коротковолновый диапозитив стал проектироваться в лучах белого света вместо голубовато-зеленых. Длинноволновый же диапозитив продолжал проектироваться в лучах оранжево-красного света. И таким образом на экран стали падать лучи только белого и оранжево-красного света. Никаких других лучей не было. На экране эти лучи смешивались аддитивно, но важно то, что в каждой точке экрана пропорции смеси белого и оранжево-красного цветов были различными. Они зависели от степени потемнения каждого из диапозитивов в данной точке изображения.

Мы проделывали с вами опыты по аддитивному смешению цветов и, в частности, белого с красным и помним, что при изменении пропорции менялась только чистота, насыщенность красного цвета, но цветовой тон оставался неизменным — красным.

Лэнд прекрасно знал о законах аддитивного смешения цветов. И поэтому трудно вообразить себе состояние ученого, когда на его глазах (именно на глазах) в течение нескольких секунд эти законы, существовавшие незыблемыми в течение очень долгого времени, рухнули!

Что делали Лэнд и его сотрудники, совершив открытие, мы не знаем. Но что пришлось им делать далее, известно — работать и работать. Снова и снова повторять опыты, опровергать самих себя и искать новые подтверждения, новые факты, объясняющие открытие. И в первую очередь следовало проверить, нет ли ошибки в самом опыте. Ведь глаз видел разнообразные цвета там, где по теории должны были существовать только цвета одного тона — оранжево-красного. Это утверждала колориметрия, это же подтверждал многолетний практический опыт. И главное, подтверждали объективные оптические приборы, с помощью которых обследовали изображение на экране. Они показывали, что (как и следовало ожидать) в любой точке экрана существует только смесь белого света с оранжево-красным.

Но человеческий глаз действовал вопреки показаниям приборов, вопреки теории и даже, казалось, самой логике: он видел различные цветовые тона там, где их не должно было быть!

Вот что пишет по этому поводу сам Лэнд: