Диалектика природы и естествознания — страница 6 из 17

1. Философия и физическая картина мира

Физика возникла как наука о природе. Известно, что развитие материального производства связано с поисками в природе новых источников энергии и с совершенствованием средств труда (по выражению К. Маркса, «костной и мускульной системы производства»). Существует неразрывная взаимосвязь между средствами труда и развитием соответствующих разделов физики. Потребности совершенствования орудий труда в XVII в. непосредственно вели к разработке таких понятий, как масса, сила, скорость, ускорение и др., а установление связи между ними привело к открытию законов механики. В свою очередь развитие механики способствовало прогрессу техники, материального производства.

Взаимосвязь физики и производства можно проследить на примере не только механики, но и других разделов физики. Например, в ходе изучения тепловых явлений в середине XIX в. были созданы тепловые двигатели, а в процессе их усовершенствования появился особый раздел физики — учение о теплоте, термодинамика. В результате формирования учения об электричестве и магнетизме возникли и развивались электротехника и радиотехника. Таков же путь развития современной атомной физики: в процессе изучения атомных явлений создавались и развивались средства производства ядерной энергетики, а развитие атомной техники открывало новые возможности для развития современной физики.

Таким образом, удовлетворение потребностей развития материального производства было возможно лишь при углублении знаний о природе, а последнее, как показано ранее, невозможно без философии. Основные понятия физики возникли в процессе обобщения опытных данных под непосредственным воздействием тех или иных философских взглядов на природу. Поскольку представления о материи и ее атрибутах в физике являются главными, все понятия физики складывались главным образом под влиянием философских, и в частности материалистических, представлений о природе.

Если в развитии эмпирических знаний в физике главная роль принадлежит опытам и тем самым приборам (орудиям эксперимента), то в развитии теоретических знаний в физике ведущую роль играют материалистические представления о природе, на основе которых возникают общие понятия, принципы и гипотезы, служащие исходным пунктом при построении физических теорий. Данные эксперимента и исходные основы для построения теорий в системе физического знания существенно отличаются друг от друга. Первые просты в том смысле, что отражают отдельные стороны явлений. Их систематизация и обобщение в виде эмпирических законов представляют уже более сложное эмпирическое знание, поскольку оно относится не только к этим явлениям, но и к совокупностям, составляющим отдельную группу взаимосвязанных явлений. Исходные предпосылки построения теории — система общих понятий, принципов и гипотез — являются наиболее общим физическим знанием, поскольку на их основе строятся все теории, существующие на данном этапе развития физики.

Каждая теория отражает закономерность какой-либо области явлений, которая состоит из нескольких групп, служащих объектом непосредственного эмпирического исследования. В системе теоретического знания физическая теория играет главную роль в познании объективных законов и в объяснении наблюдаемых групп физических явлений. Но очевидно, что та исходная основа, на которой строятся физические теории, является более общим знанием по сравнению с отдельными физическими теориями. Любая теория охватывает лишь одну область явлений, а ее базис включает все их области, отражая наиболее общие стороны изучаемой физической реальности в целом и давая тем самым общую физическую картину мира.

Следовательно, в системе физического знания данные эксперимента, как наиболее частный вид знания, и физическая картина мира, как наиболее общий вид знания, являются такими противоположностями, отношение между которыми выступает движущей силой, источником развития физики.

Понятие «физическая картина мира» употребляется давно, однако лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания, который может возникнуть на основе философских обобщений даже до построения теорий и который, давая самое общее теоретическое знание в физике (система общих понятий, принципов и гипотез), служит исходной основой для построения теорий[53]. Современная физическая картина мира, с одной стороны, обобщает все ранее полученные данные об этой части природы, а с другой — вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого в физике не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы, как отмечал В. И. Ленин, ломаются, новые возникают, картина мира меняется[54].

Законы развития физики тесно связаны с физической картиной мира. Если количество опытных данных постоянно возрастает, то картина мира некоторое, подчас длительное время остается относительно неизменной. Вследствие этого она становится основной характеристикой определенного этапа в развитии физики, что и определяет ее фундаментальную роль в построении физических теорий. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления.

В этом состоит первая закономерность истории развития физики: она делится на ряд качественно различных этапов, обусловленных прежде всего представлениями и понятиями о материи и движении. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и в появлении новой.

В пределах данного этапа развитие физики идет эволюционным путем, без изменения основ картины мира. Оно состоит в реализации возможностей построения новых теорий, которые заложены в данной картине мира. Однако сама она при этом может эволюционировать, достраиваться, оставаясь в рамках определенных конкретно-физических представлений о материи. В новой картине мира в начальный период ее развития наряду с новыми представлениями о материи могут сохраняться старые идеи о ее атрибутах, вследствие чего в картине мира могут возникнуть внутренние противоречия, побуждающие ее к развитию, к выработке таких представлений о коренных свойствах материи, которые находились бы в соответствии с пониманием самой материи. Таким образом, в постепенной достройке физической картины мира состоит вторая закономерность развития физики. Если первая закономерность определяет переход от одного периода развития физики к другому — революцию в развитии физики, то вторая — эволюционный ход развития физики в пределах данного периода.

В истории физики конкретные физические представления о материи менялись два раза. Сначала был совершен переход от атомистических, корпускулярных представлений о материи (материя абсолютно прерывна) к полевым — континуальным представлениям (материя абсолютно непрерывна). Затем континуальные представления о материи были заменены современными квантовыми представлениями (материя и прерывна и непрерывна).

Следовательно, в ходе развития физики можно говорить лишь о трех физических картинах мира и соответственно о трех исторических этапах развития физики. Первый характеризуется корпускулярными, атомистическими представлениями о материи и построенной на их основе механической картиной мира. Второй этап опирается на континуальные представления о материи. Такому ее пониманию соответствует электродинамическая картина мира. Третий этап характеризуется современными квантово-полевыми представлениями о материи, в соответствии с чем строится квантово-полевая картина мира. Разберем подробнее диалектику формирования и смены этих физических картин мира.

2. Механическая картина мира

Полноценной наукой физика стала в XVII в., когда появилась общественная необходимость в более глубоком изучении природы. До этого понимание природы основывалось на обыденных знаниях и натурфилософии. Дальнейшее развитие общественного производства было невозможным без более глубокого понимания явлений природы.

При переходе от обыденного к научному пониманию природы большую роль сыграли материалистические идеи. В трудах П. Гассенди и Г. Галилея был восстановлен атомизм древнегреческих философов. При этом на первое место выдвигалось понятие движения. Р. Декарт считал, что оно обусловливает все явления природы. Подлинно революционной была гипотеза Галилея о возможности движения без двигателя (закон инерции). Наконец, И. Ньютон завершил построение новой, революционной для того времени картины природы, сформулировав основные идеи, понятия и принципы, составившие механическую картину мира.

И. Ньютон начинает свой основной трактат («Математические начала натуральной философии») с изложения основных понятий картины мира. Исходя из атомистических представлений о материи, он вводит понятие массы как количества материи, наделяет тела «внутренним врожденным свойством двигаться равномерно и прямолинейно», а отклонение от этого состояния движения связывает с действием на тело «внешней силы»[55]. При этом И. Ньютон выдвигает «гипотезу о тяготении» как универсальном свойстве всех тел «тяготеть друг к другу»[56]. Поставив перед собой задачу объяснить все явления по наблюдаемым движениям, И. Ньютон дополняет картину мира своим пониманием времени, пространства и движения, которые существуют абсолютно, т. е. независимо от материи[57].

Как видно, формулируя общие исходные начала своего труда, И. Ньютон изложил определенные физические представления о материи и движении, пространстве и времени, взаимодействии и закономерности в соответствии с философскими идеями Г. Галилея и П. Гассенди (атомистические представления о материи), Р. Декарта, придававшего первостепенное значение движению, и Т. Гоббса, доказывавшего объективность протяженности. При этом одной из ведущих философских идей, которой руководствовался И. Ньютон в своих исследованиях, была идея единства и универсальной взаимосвязи явлений[58].

На основе механической картины мира Ньютон сформулировал законы движения, которые он считал фундаментальными законами мироздания. Создание механики способствовало ускоренному развитию теоретических методов исследования природы. Как отмечают историки физики, с 1690 по 1750 г. особенно быстрыми темпами развивается математическая физика[59].

В теоретическом базисе механики И. Ньютона находилась система материальных точек. Исходя из ньютоновских представлений о природе, механической картины мира, Л. Эйлер и Я. Бернулли разработали ряд новых физических теорий — теорию движения твердого тела, теорию упругости и гидродинамику. Ж. Л. Лагранж систематизировал механику и поставил перед собой задачу объяснения всех явлений мироздания чисто аналитическим путем, руководствуясь механикой и механической картиной мира. В конце XVIII и начале XIX в. П. С. Лаплас, реализуя программу Лагранжа в объяснении мироздания, разработал «земную», «небесную» и «молекулярную» механику.

Успехи механической теории в объяснении явлений природы, а также их большое значение для развития техники, для конструирования различных машин и двигателей привели к абсолютизации механической картины мира. Она стала рассматриваться в качестве универсальной научной картины мироздания. Весь мир (включая и человека) понимался как совокупность огромного числа неделимых частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия). Согласно этому принципу, любые события жестко предопределены законами механики, так что если бы существовал, по выражению П. Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять[60].

В то же время в конце XVIII — начале XIX в. в физике накапливались эмпирические данные, противоречащие механической картине мира. Так, наряду с рассмотрением системы материальных точек (что полностью соответствовало корпускулярным представлениям о материи) пришлось ввести понятие сплошной среды, связанное по сути дела уже не с корпускулярными, а с континуальными представлениями о материи. Тем самым обнаружилось противоречие между механической картиной мира и некоторыми фактами опыта. Для объяснения световых явлений вводилось понятие эфира — особой тонкой и абсолютно непрерывной «световой материи». Однако уже Ньютон пытался показать, что эти явления можно объяснить, исходя из тех принципов, которые находились в основе созданной им механики. Он разработал корпускулярную теорию света, расширив тем самым содержание механической картины мира.

В XIX в. методы механики были распространены на область тепловых явлений, электричества и магнетизма. Казалось бы, все это свидетельствовало о больших успехах механического понимания мира в качестве общей исходной основы науки. Однако при попытке выйти за пределы механики системы точек приходилось вводить все новые и новые искусственные допущения, которые постепенно готовили крушение механической картины мира. Так, для объяснения теплоты было введено понятие «теплорода», т. е. особой тонкой сплошной материи, для объяснения электричества и магнетизма предположили существование особых непрерывных видов материи — «электрической» и «магнитной» жидкости. Ф. Энгельс критиковал эмпириков, которые думали, что объяснили все явления, подведя под них какое-нибудь неизвестное вещество: световое, тепловое или электрическое. Эти «воображаемые вещества теперь можно считать устраненными»[61], — писал он. И действительно, позднее на основе механической картины мира была построена кинетическая теория тепла, сформулирован закон сохранения и превращения энергии, и таким образом «теплород» был отброшен.

Но механический подход к таким явлениям, как свет, электричество и магнетизм, оказался неприемлемым. Опытные факты искусственно подгонялись под механическую картину мира. Несмотря на множество попыток, механическую модель эфира как материального носителя света, электричества и магнетизма так и не удалось построить. Однако в рамках этой картины мира данному обстоятельству не придавалось принципиального значения, и попытки построить атомистическую модель эфира продолжались даже в XX в. Считая, что такая модель все же в принципе возможна, и ссылаясь на успехи механической картины мира, в частности кинетической теории тепла и статистической механики, многие крупнейшие физики второй половины XIX и даже начала XX в. полагали, что механистическое миропонимание является единственно научным и универсальным. Так, по свидетельству М. Планка, его учитель Ф. Жолли заявлял:

«Конечно, в том или ином уголке можно еще заметить или удалить пылинку или пузырек, но система, как целое, стоит довольно прочно, и теоретическая физика заметно приближается к той степени совершенства, какою уже столетия обладает геометрия»[62].

Не увенчавшиеся успехом попытки объяснить на основе механической картины мира явления света, электричества и магнетизма свидетельствовали о том, что противоречия между общим физическим знанием и частным — данными опыта — фактически оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира. Но приверженность физиков к старым догмам мешала пониманию этого принципиально важного обстоятельства.

3. Электромагнитная картина мира

В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными (от лат, continuum — непрерывность). Он писал: «Я чувствую большое затруднение в представлении атомов материи с промежуточным пространством, не занятым атомами…»[63] Он сделал вывод о том, что электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпадал вопрос о построении механической модели эфира, о непримиримости механических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма. Основная трудность в объяснении света с помощью предполагаемого эфира состояла в следующем: если эфир — сплошная среда, то он не должен препятствовать движению в нем тел и, следовательно, должен быть подобен очень легкому газу. В опытах же со светом были установлены два фундаментальных факта: во-первых, световые и электромагнитные колебания являются не продольными, а поперечными и, во-вторых, скорость распространения этих колебаний очень велика — порядка 3 х 105 км/сек. В механике же было показано, что поперечные колебания возможны лишь в твердых телах, причем скорость их зависит от плотности этих тел.

Для такой большой скорости, как скорость света, плотность эфира во много раз должна превосходить плотность стали. Но тогда непонятно, как же такой сверхплотный эфир не препятствует движению в нем тел? На протяжении всего XIX и частично XX в. продолжались упорные попытки разрешить эти трудности в представлениях об эфире, хотя фактически еще М. Фарадей в 1844 г. нашел правильное решение проблемы. Чтобы принять это решение, надо было совершить революцию в представлениях о материи и движении.

Д. К. Максвелл был одним из первых, кто должным образом оценил значение взглядов Фарадея на природу. При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы[64]. Согласно взглядам Фарадея, электромагнитное поле — тонкая невещественная материя, первичная по отношению к атомам и телам; движение — распространение колебаний в поле — первично по отношению к перемещению тел. Пустого пространства нет, так как поле является абсолютно непрерывной материей; время неразрывно связано с процессами, происходящими в поле; не соответствует действительности и ньютоновский принцип дальнодействия: любые взаимодействия передаются полем от точки к точке непрерывно и с конечной скоростью (фарадеевский принцип близкодействия).

Руководствуясь этими представлениями о физической реальности, Дж. Максвелл в 1867 г. построил теорию электромагнетизма. Вследствие своего революционного характера она долгое время казалась трудной и непонятной для тех физиков, в умах которых продолжала господствовать механическая картина природы. Трудности усвоения теории электромагнетизма усугублялись еще и тем, что она выражалась при помощи более сложных, чем в механике, математических уравнений. Но они удивительно хорошо объясняли все известные факты.

Тем не менее физикам, не владевшим диалектикой, казалось, что если эфир отброшен, то отброшена и материя; признать же поле за материю они не могли. В физике начались «шатания мысли». Как отмечал В. И. Ленин:

«„Материя исчезает“, остаются одни уравнения… получается старая кантианская идея: разум предписывает законы природе». «Такова первая причина „физического“ идеализма. Реакционные поползновения порождаются самим прогрессом науки»[65], — делает вывод В. И. Ленин.

Объективный ход развития физики неизбежно привел к ломке старых фундаментальных понятий и принципов, к формированию новых. Непримиримое противоречие между механической картиной мира и опытными данными разрешилось крушением первой. Вместо нее возникло новое миропонимание — электромагнитная картина мира, и начался новый период в развитии физики.

Ученые занялись математической разработкой теории Дж. Максвелла, как это имело место и после создания механики Ньютона[66]. Вернее сказать, с появлением электромагнитной картины мира начался этап интенсивного эволюционного развития физики на новой основе. Взгляды М. Фарадея и Дж. Максвелла произвели подлинную революцию в представлениях о природе. В качестве исходной материи здесь оказалась не совокупность неделимых атомов, перемещающихся в пустоте, а единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами — электрическими зарядами и с волновыми движениями в нем. Основными законами мироздания оказались не законы механики, а законы электродинамики[67]. В связи с этим менялись и методы научного исследования.

Теория электромагнетизма Максвелла объяснила большой круг явлений, не понятых с точки зрения прежней механической картины мира. Кроме того, она глубже вскрывала материальное единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов. Последние послужили базой для электромагнитной теории света. При этом была построена единая шкала электромагнитных колебаний от самых длинных радиоволн до коротких рентгеновских и гамма-излучений. На первых порах успешно разрабатывалась и электронная теория строения вещества. Ученые пытались и механические движения объяснить с помощью электродинамики. Строились доказательства электромагнитного происхождения массы, была найдена формула зависимости массы от скорости (М. Абрагам).

Однако на этом пути вскоре стали возникать непреодолимые трудности. Так, согласно электромагнитной картине мира, заряд считался точечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории Г. А. Лоренца частица-заряд вопреки новой картине мира рассматривалась в виде твердого заряженного шарика, обладающего массой. Однако это допущение не снимало трудностей. Полученная опытным путем формула зависимости массы от скорости не совпадала с рассчитанной на основе теории. Вскоре появились и другие расхождения теории и опыта. Непонятным оказался результат опытов, проведенных в 1881–1887 гг. Майкельсоном. В этом опыте он пытался обнаружить движение тела по инерции при помощи приборов, находящихся на этом же теле. По теории Максвелла, такое движение можно обнаружить, но опыт не подтверждал этого.

В конце XIX — начале XX в. исследования показали, что взгляды Максвелла на физическую реальность были внутренне противоречивы. Приняв новые взгляды на материю и движение, заменив механические законы природы на электродинамические, он сохранил ньютоновские представления об абсолютности пространства и времени. Но в самих уравнениях электродинамики неявно содержалось предположение об относительности пространства и времени, чего сам Максвелл, как и другие физики того времени, не заметил[68].

Электродинамический этап развития физики делится на два периода: от Фарадея и Максвелла до Эйнштейна и после Эйнштейна по настоящее время. В первый период в результате некоторой недостроенности новой картины мира (сохранение ньютоновских представлений о пространстве и времени) в построении электродинамических теорий имелись внутренние противоречия, о которых мы говорили ранее. Однако этому не придавалось принципиального значения. Более того, выводы теории Максвелла были абсолютизированы, так что даже такой крупный физик, как Г. Кирхгоф, восклицал: «Разве осталось что-либо еще открывать?»

Однако к концу XIX в. все больше накапливалось необъяснимых несоответствий теории и опыта. Последние следует разделить на две группы. Одни были обусловлены указанной выше недостроенностью электромагнитной картины мира. Другие вообще не согласовывались с континуальными представлениями о материи, т. е. выходили за пределы этой картины. К последним следует отнести трудности в объяснении фотоэффекта, открытого в 1887 г., линейчатых спектров атомов, но особенно большие трудности возникали при попытках построить теорию теплового излучения. Эмпирические законы, установленные в этой области, не согласовывались с новой картиной мира.

Последовательное применение теории Максвелла к другим движущимся средам приводило к выводам о неабсолютности пространства и времени. Однако убежденность в их абсолютности была так велика, что ученые удивлялись своим выводам, называли их странными и фактически отказывались от них[69]. Работами этих ученых, прежде всего Г. Лоренца и А. Пуанкаре, завершается доэйнштейновский период развития электродинамической физики[70].

Однако концепция абсолютности пространства и времени И. Ньютона, базировавшаяся на их независимости от характера и природы движущихся тел, не была отброшена сразу. Открытия А. Эйнштейна, теоретически обосновавшие тезис единства материи, движения, пространства и времени, победили тогда, когда была доказана диалектическая связь пространства и времени как форм движения материи с природой движущихся систем. Принимая законы электродинамики в качестве основных законов физической реальности[71], Эйнштейн ввел в электромагнитную картину мира идею относительности пространства и времени и тем самым устранил противоречие между пониманием материи как определенного вида поля и ньютоновскими представлениями о пространстве и времени. Взгляды Эйнштейна опирались на более правильное и глубокое философское понимание сущности электродинамической физики, что дало ему возможность устранить из электромагнитной картины мира ньютоновское понимание пространства и времени, заменив их такими, которые соответствовали полевым континуальным представлениям о материи и движении. Тем самым новая картина мира была создана в виде системы согласованных между собой понятий, принципов и гипотез.

С появлением теории относительности Эйнштейна (1905 г.) начинается второй период в развитии физики. Введение в электромагнитную картину мира релятивистских представлений о пространстве и времени открыло новые возможности для ее развития. Прежде всего были разработаны новые специальные теории: релятивистская «динамическая» механика, релятивистская «феноменологическая» термодинамика, релятивистская статистическая механика. Что касается электродинамики Максвелла, то она была дополнена электродинамикой движущихся тел.

Первой качественно новой теорией этого периода стала общая теория относительности (1916 г.), которая фактически является теорией тяготения. Чтобы ее построить, в электромагнитную картину мира А. Эйнштейном было введено понятие о кривизне пространства-времени, что расширяло конкретные представления о пространстве и времени. Как известно, по Ньютону, тяготение определялось как особая способность тел мгновенно притягивать друг друга при любых расстояниях между ними. Такое понимание тяготения является поверхностным, однако оно просуществовало в физике более 200 лет. Эйнштейн впервые дал глубокое объяснение природы тяготения. При этом большое философское значение имеет введенная Эйнштейном зависимость кривизны пространства-времени от распределения масс, т. е. от таких видов материи, как вещество и поле. Тем самым получило подтверждение известное положение материалистической диалектики о взаимосвязи пространства, времени и движущейся материи.

К тому же в результате новых экспериментальных открытий в области строения вещества в конце XIX — начале XX в. все больше обнаруживалось непримиримых противоречий между электромагнитной картиной мира и опытными фактами. В 1897 г. было открыто явление радиоактивности и было установлено, что оно связано с превращением одних химических элементов в другие, которое сопровождается испусканием α-лучей (ионов гелия) и β-лучей (электронов). Изучение этих явлений создало основу для построения эмпирических моделей атома. Такого рода модели, построенные на основе опытных данных, противоречили электромагнитной картине мира.

В 1900 г. М. Планк в процессе многочисленных попыток построить теорию излучения был вынужден высказать предположение о прерывности (квантовом характере) процессов излучения. Сам Планк, в то время приверженец электромагнитной картины мира, отмечал, что он испытывает отвращение к такой странной гипотезе, разрушающей стройное здание электродинамики Максвелла. Однако гипотеза Планка о квантах излучения оказалась очень плодотворной.

Противоречия между электромагнитной картиной мира и новыми открытиями в области строения атома и законов излучения становились все более непримиримыми. Назревала новая революция в физике, связанная с заменой существующей картины мира квантово-полевой.

4. Становление квантово-полевой картины мира

В начале XX в. эмпирически полученные данные о строении атома и о законах излучения оказались в противоречии с теорией электродинамики Максвелла, и это вело к принципиально новым представлениям о материи и движении. С одной стороны, представления о материи как о непрерывном бесконечном электромагнитном поле подтверждались огромным количеством экспериментальных данных, с другой — факты прерывности излучения и факты, свидетельствующие о сложном строении атома, нельзя было игнорировать. Таким образом, возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц. В начале XX в. предпринимались многочисленные попытки совместить эти две точки зрения на материю (и на весь мир). При этом возникло множество предположений и гипотез, но все они, как правило, не могли объяснить, как могут существовать взаимоисключающие представления о материи. Многим казалось, что физика зашла в тупик, из которого нет выхода. Как выразился один из крупных физиков, П. Иордан, в этой науке воцарилось «беспокойство и смятение»[72].

Это смятение усугубилось, когда в 1913 г. Н. Бор предложил свою модель атома. Он предполагал, что электрон, вращающийся вокруг ядра, вопреки законам электродинамики не излучает энергии. Он излучает ее порциями лишь при перескакивании с одной орбиты на другую. Данное предположение первоначально казалось странным и непонятным даже таким физикам, как Э. Резерфорд, который является одним из авторов планетарной модели атома[73].

Однако именно модель атома Бора в значительной степени способствовала формированию новых физических представлений о материи и движении. В 1924 г. Луи де Бройль, используя аналогию между принципами наименьшего действия в механике и оптике, высказал гипотезу о соответствии каждой частице определенной волны. Иными словами, каждой частице материи присущи и свойство волны (непрерывность) и дискретность (квантовость). Тогда, отмечал де Бройль, становилась понятной теория Бора[74].

Эти физические представления нашли подтверждение в работах, выполненных в 1925–1927 гг. Э. Шредингером и В. Гейзенбергом. Первый на основе гипотезы де Бройля нашел волновое уравнение для частиц, а второй, развивая идеи Бора, дал основное уравнение квантовой механики в матричной форме. Вскоре М. Борном была показана тождественность волновой механики Шредингера и квантовой механики Гейзенберга.

В формировании квантово-полевой картины природы большую роль сыграла диалектическая идея о единстве прерывного и непрерывного. Тот, кто принимал эту идею, легко воспринял корпускулярно-волновой дуализм в представлениях о материи и движении. При построении первой квантовой теории поля — электродинамики Дирака — оно рассматривалось как совокупность частиц, а квантовые частицы — как возбуждение поля. Тем самым устанавливалась неразрывная взаимосвязь элементарных частиц и квантовых полей.

В настоящее время открыто несколько сот элементарных частиц. По массе они делятся на две группы: тяжелые (адроны) и легкие частицы (лептоны). При этом сначала было теоретически предсказано, а затем экспериментально подтверждено, что каждой элементарной частице соответствует античастица, обладающая противоположным знаком заряда и некоторыми другими квантовыми характеристиками. Одна из основных особенностей элементарных частиц — их универсальная взаимозависимость и взаимопревращаемость. Каждому виду элементарных частиц соответствуют свои формы взаимодействия. Кроме ранее известных электромагнитных (в которых участвуют частицы, обладающие электрическим зарядом) и гравитационных взаимодействий (в которых участвуют вообще все частицы) были открыты два новых вида взаимодействий: сильные, в которых участвуют адроны, и слабые, в которых участвуют лептоны. При этом происходит обмен виртуальными (короткоживущими) частицами, различными для разных видов взаимодействия. Это расширило представления о самом механизме взаимодействия. В современной физике основным материальным объектом является квантовое поле. Оно может находиться в возбужденном состоянии. При переходе поля из одного состояния в другое число частиц меняется.

Несмотря на тесную взаимосвязь понятий поля и частицы, понятие поля как совокупности частиц не исчерпывает его содержания. Специфика квантово-полевого понимания материи выражается и в том, что поле сохраняется даже тогда, когда частицы в нем отсутствуют. Такое состояние поля называется невозбужденным («нулевым»). Его не совсем точно называют вакуумом: в таком поле отсутствуют лишь частицы, но само поле остается протяженной материальной физической реальностью. Это подтверждено экспериментально. Представление о невозбужденных полях играет все более важную роль в квантово-полевой картине мира.

Ее особенность состоит в том, что в характеристике взаимопревращения частиц не действует закон сохранения их числа, т. е. частицы могут возникать, уничтожаться и превращаться в строгом соответствии с определенными законами сохранения (энергии, импульса, заряда и некоторых других специфически-квантовых величин). Совокупность этих законов в конечном счете является формой выражения всеобщего закона сохранения материи и движения[75].

Современные квантово-полевые представления о материи и движении не получили еще своей окончательной формулировки. Во-первых, в процессе развития атомной техники и эксперимента открываются все новые и новые разновидности микрообъектов. Во-вторых, в последние годы были сначала предсказаны теоретически, а затем зафиксированы экспериментально составные части квантовых частиц — так называемые кварки. Из них состоят все элементарные частицы, кроме лептонов. Поэтому стали говорить о кварках и лептонах как о фундаментальных частицах, из которых состоят все элементарные частицы. Однако в последнее время появились гипотезы о существовании еще более «элементарных» частиц, структурных элементов, из которых состоят кварки и лептоны. Эти гипотетические частицы названы «перонами». Как видно, в развитии квантово-полевых представлений подтверждается ленинское положение о неисчерпаемости материи вглубь.

Спецификой квантово-полевых представлений о закономерности и причинности является то, что они выступают в вероятностной форме. Уравнения поля, выражающие объективные связи и законы, отражают и возможности тех или иных квантовых процессов, которые могут произойти в данной квантовой системе. В частности, вероятностная обусловленность тех или иных ее свойств выражена в соотношениях неопределенностей сопряженных пар физических величин: координаты и импульса, времени и энергии и некоторых других. Вследствие этих неопределенностей об элементарной частице нельзя говорить как о частице в обыденном понимании.

По мере того, как складывались квантово-полевые представления о материи и движении, о взаимосвязи и взаимодействии, о причинности и закономерности, строились различные общие теории. Сначала они охватывали лишь отдельные виды взаимодействий. Так, вслед за квантовой электродинамикой (теорией электромагнитных взаимодействий) была разработана теория слабых взаимодействий. Затем предпринимались многочисленные, но малоплодотворные попытки теоретического описания сильных взаимодействий. Но вскоре вследствие ряда возникших трудностей построение новых теорий затормозилось. Ученые пришли к выводу, что для дальнейшего развития физики необходимы принципиально новые идеи[76]. В. Гейзенберг, например, указывал, что надо отказаться от ряда устаревших понятий и по-новому сформулировать такие понятия, как «состояние», «часть» и «целое», «пространственная протяженность» и некоторые другие[77].

Это свидетельствовало о том, что квантово-полевая картина мира была недостаточно разработана в качестве исходной основы для построения этих теорий. Поэтому такие теории неизбежно были ограниченными; в них необходимо было вносить поправки и дополнения, с тем чтобы согласовать теоретические выводы с данными эксперимента. В результате они переставали быть подлинными теориями и превращались в свод полуэмпирических правил и закономерностей[78].

Однако за последние годы содержание квантово-полевой картины мира значительно расширилось. Прежде всего в соответствии с новыми экспериментами углублялись квантово-полевые представления о материи и движении, что оказывало влияние на картину мира в целом. В процессе более обстоятельного изучения взаимодействий между частицами было установлено, что понятие «состоять из» приобретает особый смысл. Оказалось возможным образовывать частицы с малой массой из частиц с большой массой. Таким образом, понятия «часть» и «целое» становились относительными, поскольку «часть» могла быть больше «целого». На этой основе сложились представления о том, что различия между микромиром и макромиром также относительны. Возникла гипотеза о «фридмонах» как о таких объектах, которые обладают космическими масштабами, но для внешнего наблюдателя проявляются как частицы сколь угодно малых размеров.

С открытием кварков и с разработкой гипотезы о «перонах» более глубокими стали и представления о материи и движении. Так, обнаружилось, что кварки и антикварки, составляющие протон и другие сложные частицы, связаны посредством особых виртуальных частиц — глюонов, взаимодействие которых тем слабее, чем ближе кварки находятся друг к другу. Создается представление, что внутри сложных частиц кварки относительно независимы друг от друга, обладают значительными «степенями свободы». Но при их удалении друг от друга взаимосвязь кварков становится столь большой, что «выбить» кварк из частицы оказывается практически невозможным. По всей вероятности, вне составленных из них частиц кварки и антикварки вообще не существуют. При таком углублении и расширении представлений о частицах и их взаимодействиях открываются новые возможности для построения квантовых теорий.

Перед современной физикой поставлена задача «великого объединения» — построения единой теории, охватывающей все виды взаимодействий элементарных частиц. Только такая теория могла бы рассматриваться в рамках достаточно разработанной картины мира в качестве фундаментальной квантово-полевой теории. Вместе с тем с ее появлением можно было бы считать завершенным формирование основ квантово-полевой картины мира. Отдельные элементы такого «великого объединения» уже созданы. Так, в 1967 г. С. Вейбергом и А. Саламом была разработана теория, объединяющая электромагнитные и слабые взаимодействия. Вслед за этим возникла задача объединения в одной теории этих взаимодействий с сильными взаимодействиями.

Однако в поисках такой единой теории физики натолкнулись на трудности, что свидетельствует о недостаточной разработанности ее основ. По-видимому, нужны качественно новые идеи и гипотезы. В этом плане плодотворным оказалось предположение о спонтанном нарушении симметрии вакуума, что связано с расширением представлений о вакууме как особом виде квантово-полевой материи: хотя вакуум является нулевым (основным) состоянием квантовой системы, он тем не менее обладает не нулевой энергией. Для дальнейшего успешного развития физики необходимо прежде всего углубление философских основ современной научной картины мира.

Таким образом, изучение особенностей современной революции в физике позволяет сделать ряд важных методологических выводов. Прежде всего необходима доработка квантово-полевой картины мира в соответствии с положениями о неисчерпаемости материи и многообразии ее видов, разнообразии взаимодействий, присущих квантовым объектам, объективности законов квантовой физики. Только на этом пути возможно правильное понимание необычных экспериментально установленных особенностей квантовых объектов.

Учитывая закономерности развития предыдущих физических картин мира, можно сделать вывод о том, что ключевой проблемой современной картины мира является, с одной стороны, углубление квантово-полевых представлений о материи и движении и, с другой — разработка таких представлений о пространстве и времени, которые полностью соответствовали бы квантово-полевому пониманию материи и движения.

В существующей картине мира наряду с новым, квантово-полевым пониманием материи и движения сохранились старые, электродинамические (релятивистские) представления о пространстве и времени. На этом основании некоторые физики пришли даже к выводу о неприменимости понятий пространства и времени в микромире, о том, что эти понятия якобы устарели и от них надо отказаться. На самом же деле устарели не понятия пространства и времени, а представления о них. В этом плане заслуживают внимания идеи квантования пространства и времени, идеи связи пространства и времени с внутренней симметрией элементарных частиц. Возможны и иные гипотезы об особенностях квантово-полевых объектов и форм их существования[79].

Качественные изменения представлений о пространстве и времени непосредственно связаны с разработкой нового математического аппарата, соответствующего квантово-полевой картине мира.

Таким образом, современная революция в физике открыла новые пути для развития этой науки. Однако новая физическая картина мира, пришедшая на смену старой, сложилась не сразу. Более того, до сих пор углубляются и расширяются основные для нее квантово-полевые представления о материи и движении, о взаимосвязи и взаимодействии; совершенствуются представления о причинности и закономерности. Главная задача в завершении квантово-полевой картины мира состоит в том, чтобы разработать такие квантово-полевые представления о пространстве и времени, которые качественно отличались бы от релятивистских и находились бы в полном соответствии с квантово-полевыми представлениями о материи и движении.

5. Диалектика объективного и субъективного в современной физике

Революция в физике в начале XX в. привела к созданию новых фундаментальных теорий, которые легли в основу современной физической науки. В течение первых двух десятилетий были разработаны специальная и общая теория относительности, а в 20-х годах — квантовая механика. Появление теории относительности и квантовой механики означало ломку старых, классических понятий и выработку новых, более адекватно описывающих явления, с которыми столкнулась наука, вскрыло несостоятельность метафизических взглядов на природу. Однако в этой ситуации оживились надежды некоторых зарубежных ученых на возможность обоснования идеалистических воззрений.

Дело в том, что теория относительности показала ограниченность господствовавших ранее в науке метафизических представлений об абсолютном пространстве и абсолютном времени. Согласно теории относительности, величина расстояния между какими-то точками или временного интервала между двумя событиями не абсолютна, а зависит от системы отсчета. Отсюда «физические» идеалисты сделали вывод, будто пространство и время вообще существуют не объективно, а лишь в нашем восприятии, лишь постольку, поскольку мы их измеряем, наблюдаем.

Далее, в квантовой механике была вскрыта ограниченность метафизических представлений о структуре материи, а также односторонность и недостаточность механистических представлений о причинности. Оказалось, что традиционные взгляды на динамическую обусловленность явлений нельзя совместить с новыми представлениями о микрообъектах, вытекающими из соотношения неопределенностей Гейзенберга. На этом основании «физические» идеалисты делали вывод о том, что якобы вообще нельзя дать полного описания реальности с точки зрения принципа причинности, и заявляли, что материализм устарел и его надо отбросить. Так, известный физик А. Эддингтон писал, что данные теории относительности и квантовой механики будто бы подтверждают основные философские принципы Дж. Беркли и И. Канта, а Джине утверждал даже, что они доказывают правильность философии Платона.

Таким образом, отказ от старых метафизических, механических представлений «физические» идеалисты попытались выдать за крах материализма вообще. Между тем В. И. Ленин указывал, что «изменчивость человеческих представлений о пространстве и времени так же мало опровергает объективную реальность того и другого, как изменчивость научных знаний о строении и формах движения материи не опровергает объективной реальности внешнего мира»[80].

Теория относительности и квантовая механика не дают оснований для отхода от материализма, если иметь в виду диалектический материализм. Теория относительности, вскрывшая ограниченность ньютоновских представлений об абсолютном пространстве и абсолютном времени, вполне согласуется с диалектико-материалистическим учением о пространстве и времени как формах существования материи. Установив, что для тел, движущихся друг относительно друга, величина пространственных промежутков и темп течения времени оказываются различными, она наполнила конкретным физическим содержанием тезис материалистической диалектики о зависимости свойств пространства и времени от движения материи. В ней выражена физическая форма диалектической взаимосвязи пространства и времени — четырехмерный пространственно-временной мир. Неотделимость пространства и времени от движения материи находит физическое обоснование в открытой связи особенностей этого четырехмерного мира с полем тяготения.

Квантовая механика, показав неприменимость к микроявлениям механистического понимания причинности как однозначной динамической предопределенности последующих состояний предыдущими, не отвергает причинность вообще, а лишь выявляет ее новые формы. В причинности диалектически сочетаются необходимые и случайные связи, устанавливаются вероятностно-статистические закономерности, несводимые к механистически понимаемой причинности. При этом соотношение неопределенностей лишь устанавливает границы применимости к элементарным частицам обычного представления о частицах, свойственного классической механике, но не ставит под сомнение применимость к ним принципа причинности, если понимать его не в механическом (лапласовском), а в более широком, вероятностно-статистическом смысле.

Важно, однако, не просто показать, что теория относительности и квантовая механика подтверждают научность материалистической диалектики, а раскрыть, что нового фундаментальные физические теории, рожденные научной революцией XX в., привнесли в материалистическую диалектику. Постановка такой проблемы связана с осмыслением изменений, которые претерпело соотношение объективного и субъективного в научном познании.

В XX в. наука вышла за пределы мира макроскопических явлений, доступных человеку в его житейском опыте. Релятивистская и квантовая физика столкнули человечество с кругом объектов, во многом отличающихся от объектов привычного, «земного» мира. Это значительно расширило сферу человеческих знаний, но вместе с тем существенным образом изменило гносеологическую ситуацию, в которой развертывается процесс научного познания.

Идеалом научного познания действительности в XVIII–XIX вв. было полное устранение познающего субъекта из научной картины мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необходимых для его описания сведений. Этот идеал, казалось, был близок к осуществлению в классической физике. Тогда представлялись обоснованными надежды на то, что с углублением научного исследования мира создаваемая наукой картина природы будет все более независимой от используемых приемов познания. Однако физика XX в. столкнулась с непредвиденными обстоятельствами, которые дали о себе знать прежде всего при изучении микромира.

Во-первых, новая, более мощная экспериментальная техника, использование которой служило необходимым условием для вторжения в области природы, далекие от обыденных условий жизни человека, становится настолько существенным посредническим звеном между исследователем и изучаемыми явлениями, что последние предстают перед исследователем не в их «натуральном» виде, а в форме, существенно измененной условиями эксперимента. Конечно, применение мощной экспериментальной техники позволяет устранить многие субъективные моменты, связанные с индивидуальными особенностями исследователя. Но в то же время оно неизбежно ведет к вмешательству в состояние наблюдаемых явлений, к познанию их в возмущенном этим вмешательством виде, к описанию их в неразрывном единстве с условиями, при которых возможна их фиксация. Таким образом, методы и средства деятельности субъекта накладывают столь глубокий отпечаток на описание исследуемых явлений, что он оказывается сам существенной и неотъемлемой частью этого описания. Следовательно, сложившееся в предшествующий период развития науки соотношение объективного и субъективного в научном познании претерпевает качественное изменение. Прежний идеал научного познания рушится.

Во-вторых, привычные наглядные образы и ассоциации, порождаемые условиями, непосредственно окружающими человека («здравый смысл»), становятся часто бесполезными при исследовании областей, где эти условия отсутствуют. Микрообъекты обладают такими особенностями, воспроизведение которых в наглядных моделях, построенных на макроуровне, сопряжено с непреодолимыми трудностями. Это обстоятельство существенно увеличивает роль абстрактных понятий, логико-математического аппарата в науке. Субъективизм при получении научного знания существенно ограничивается, поскольку оно освобождается от нестрогих интуитивных представлений. Но в то же время научное описание оказывается зависящим от применяемых средств и методов построения теоретического знания, а следовательно, в конечном счете — от общих философских представлений о том, что и как должно познаваться наукой. При этом оказывается, чем больше роль абстрактного теоретического мышления в науке, тем сильнее эта зависимость. В результате описанная наукой реальность предстает не только такой, какой она является «сама по себе», но и такой, какой она может быть изображена с помощью используемого концептуального аппарата. Иначе говоря, получаемая картина объективного мира определяется не только свойствами самого мира, но и характером теоретической обработки имеющегося эмпирического материала.

Зависимость знания от методов его получения в силу принципа отражения предполагает, что это знание имеет объективное содержание, т. е. отражает материю, как она существует до, вне и независимо от какого бы то ни было знания и какой бы то ни было деятельности[81]. Средства, методы исследования не выбираются произвольно. Они формулируются на базе определенного опытного материала, добытого человечеством на предшествующих стадиях познания, и имеют свои границы применимости. Но новый опытный материал, даже если он лежит за этими границами, приходится осмысливать с их помощью, по крайней мере до тех пор, пока на его основе не появятся другие.

Выход физики за пределы макромира выявил ограниченность понятий, используемых в классической физике. Обнаружилось, что описание микрообъектов с помощью макроскопических понятий пространственно-временного континуума и причинное объяснение не корректно.

Боровский принцип дополнительности позволяет использовать классические понятия для описания и объяснения явлений, имеющих неклассический, немакроскопический характер. Но, выражая микроскопические явления с помощью макроскопических понятий, мы вносим тем самым в картину материального мира субъективный элемент.

Таким образом, указанные обстоятельства, уменьшая роль субъективных элементов, связанных с индивидуальными особенностями исследователя, в то же время существенно увеличивают в научном познании объективного мира удельный вес факторов, порожденных макроскопической природой человека. В квантовой физике подчас невозможно с той же четкостью, что и в XIX в., отделить свойственное самой природе от того, что присуще нашему способу познания, характеру действий, обусловленному биологической организацией человека, уровнем развития социальной практики в данный период развития науки, арсеналом средств эмпирического исследования и теоретического мышления.

Это своеобразное взаимопроникновение противоположностей объективного и субъективного при поверхностном подходе к вопросу истолковывалось как своего рода «принципиальная координация» (Мах, Авенариус) между объектом и субъектом, и складывалось впечатление, будто физика XX в. вообще отказывается от первичности объекта относительно субъекта.

Конечно, познание любого материального объекта невозможно без прямого или косвенного воздействия субъекта на объект. Но воздействие на объект ведет к более или менее значительному изменению его состояния, т. е., вообще говоря, к некоторому «преобразованию» объекта. При этом оказывается: чем более сложным и «тонким» по своей природе является объект, чем он более удален от непосредственного чувственного восприятия, тем более значительно воздействие на него со стороны субъекта. Однако то обстоятельство, что для познания более сложных и «тонких» объектов требуется большая активность со стороны субъекта, не означает, что объект произведен от субъекта.

Так как «преобразование» объекта представляет собой материальный процесс, то в объекте проявляются и такие черты, которые были присущи ему еще до воздействия на него. Дело в том, что разные материальные системы по-разному реагируют на одно и то же воздействие. Это обстоятельство нельзя объяснить, отрицая первичность объекта относительно субъекта. Таким образом, действительный смысл парадоксального взаимопроникновения объективного и субъективного в современной физике заключается не в возникновении «принципиальной координации» между объектом и субъектом, а в активизации преобразующей деятельности субъекта. По мере того, как объект становится более «диковинным», познание его без указанной активизации деятельности субъекта оказывается невозможным.

С точки зрения метафизического материализма состояние физики на нынешнем этапе ее развития выглядит, по-видимому, неблагополучно. Идеалы классической науки, к которым, казалось, была близка физика XIX в., остались неосуществленными. Не удивительно, что это порождает у некоторых ученых скептицизм, сомнения в прогрессе физической науки, в объективном значении ее результатов. Сомнения эти неосновательны. Объективная ценность содержания современной физики, как и ранее, обосновывается тем, что оно проверяется опытом, практикой, будучи в конечном счете не зависящим от воли и желания ученого.

Материализм исходит из объективного существования природы до человека и независимо от него. Но из этого не следует, что научное описание природы также может не зависеть от субъекта, от применения человеком средств и способов описания. Метафизическим материалистам было свойственно убеждение, что научная теория имеет объективную ценность только в том случае, если описание объективного мира не содержит моментов, зависящих от способов его изучения. Такой подход был связан с метафизическим пониманием познания как фотографического отражения «неизменным субъектом» «неизменного субстрата». Как указывал В. И. Ленин, в этой концепции не хватало понимания того, что «истина есть процесс». Поэтому, согласно этой концепции, для познания сущности материи было необходимо абстрагироваться от всех взаимодействий, в том числе и от взаимодействия субъекта с объектом, поскольку всякое взаимодействие мешает познать такой субстрат.

Материалистическая диалектика решает этот вопрос иначе. К. Маркс указывал, что в отличие от старого материализма, для которого познаваемая действительность выступала только в форме объекта, диалектический материализм требует учитывать то влияние, которое оказывает на нее человеческая деятельность[82]. Развитие физики в XX в. показало, что это требование соответствует фактическому положению дел.

Здесь может возникнуть вопрос: а существует ли принципиальная возможность восстановить четкую границу между тем, что в научном описании реальности обусловлено свойствами самой реальности, и тем, что в ней обусловлено свойствами применяемых человеком средств познания и описания ее? Как уже было отмечено, субъективный элемент в научном описании мира появляется тогда, когда средства теоретического мышления, представления и понятия, с помощью которых описывается объект познания, оказываются непригодными для его адекватного отображения. В современной физике этот элемент связан с попыткой описать микромир с помощью представлений и понятий, сложившихся при исследовании макромира. Очевидно, если бы было возможно построить новые, неклассические, немакроскопические представления и понятия для описания микромира, т. е. привести средства теоретического мышления в соответствие с изучаемым объектом, то эффекты, порожденные в описании микроявлений особенностями применяемого ныне познавательного аппарата, исчезли бы. Но квантовая механика и теория относительности показали, что не только прежние физические представления и понятия о конкретных свойствах материи, но и прежние метафизические представления и понятия об атрибутах материи становятся недостаточными для описания явлений, которые выступают предметом исследования в современной физике. Поэтому решение поставленного вопроса зависит от того, насколько осуществима задача создания более глубоких представлений о содержании атрибутов материи, соответствующих новому опытному материалу, даваемому современной физикой.

Это подводит нас к другой важной проблеме, требующей диалектического осмысления результатов революции в физике XX в., — проблеме расширения конкретно-научного содержания атрибутов материи, или, иными словами, проблеме взаимоотношения абсолютного и относительного аспектов в представлениях об атрибутах материи.

Абсолютное содержание атрибутов материи, на наш взгляд, — это такие их свойства, которые присущи всем материальным объектам. Например, такому ее атрибуту, как время, возможно, присуще свойство необратимости. Конечно, наши знания о содержании этих атрибутов не априорны — они взяты из практики и являются обобщением накопленного человеческого опыта. Поэтому есть основания полагать, что представления о пространстве и времени, качестве и количестве, законе и причинности, сложившиеся у человечества в течение многих тысячелетий, содержат моменты, которые связаны с конкретными физическими условиями, существующими на Земле, и кажутся нам всеобщими лишь потому, что мы игнорируем их геоцентрическое происхождение и распространяем на все материальные объекты. Иначе говоря, макроскопический характер человеческих знаний накладывает отпечаток на представления о содержании атрибутов материи.

Физика XX в., прорвав горизонт геоцентрического мира, выяснила неправомерность прежних представлений о всеобщем содержании некоторых атрибутов материи. Так, теория относительности доказала, что такое свойство пространства, как его «плоский» (евклидов) характер, и такое свойство времени, как постоянство его «темпа», которые раньше казались универсальными, на самом деле не являются таковыми. Квантовая механика обнаружила, что в понятие движения (пространственного изменения) нельзя включать такие моменты, как существование траектории или непрерывность основных динамических характеристик (энергия, импульс, момент импульса), без которых в XIX в. движение и не мыслилось. Разработка теории элементарных частиц, по-видимому, требует пересмотра и нынешних представлений о содержании категорий «качество» и «причинность». А поскольку все атрибуты взаимосвязаны, можно полагать, что то же самое рано или поздно произойдет и в отношении содержания других атрибутов материи.

Таким образом, постепенно становится ясным, что наши конкретные представления о содержании атрибутов материи не являются всеобщими в полном смысле этого слова («абсолютно всеобщими»). Они всеобщи лишь для того круга условий, с которыми человечество имело дело до нынешней эпохи. Современные представления об атрибутах материи являются не абсолютными, а относительными истинами, содержащими, как подчеркивал В. И. Ленин, элементы абсолютной истины. Нынешние концепции о времени и пространстве отражают «наше видение» пространства и времени, соответствующее современному этапу развития науки. На основании обобщения результатов современной физики можно предположить, что существуют и иные, отличные от известных человечеству формы атрибутов материи. Вероятно, формы пространства, движения, качества, количества, возможности, случайности, необходимости столь же неисчерпаемы, как неисчерпаемы атом и электрон.

ГЛАВА III. ДИАЛЕКТИКА И ПРОБЛЕМЫ РАЗВИТИЯ ХИМИЧЕСКОЙ ФОРМЫ ДВИЖЕНИЯ МАТЕРИИ