Серьезная и занимательная математика существовали бок о бок с древнейших времен. Однако в начале XVII века появляется особое ответвление, посвященное анализу игр. Как уже говорилось в начале предыдущего раздела, в 1612 году была опубликована первая книга, посвященная исключительно занимательной математике, — Problemes plaisants et delectables qui se font par les nombres Клода Гаспара Баше де Мезириака (1581—1638). Этот математик, поэт и переводчик, который был одним из первых членов Французской академии наук, известен не только как автор этой книги, но и как автор комментария к переводу «Арифметики» Диофанта с греческого на латинский язык (1621). На полях одного из экземпляров именно этой книги Ферма записал свою знаменитую теорему (подробнее о нем мы поговорим в главе 3).
Обложка книги«Арифметика»Диофанта на латинском языке с комментариями Баше де Мезириака.
Золотой век математических игр: XVII и XVIII века
Книга де Мезириака — своеобразный конспект по занимательной математике той эпохи. В ней описана задача о волке, козе и капусте, магические квадраты, задачи о целых числах и взвешиваниях, например: «Найти минимальное число гирь и их массу, с помощью которых на простых весах с двумя чашками можно измерить любой вес, выраженный целым числом от 1 до 40».
Начиная с этого момента, уже в XVII веке появляется множество книг похожего стиля. В 1624 году Анри ван Эттен (это псевдоним французского иезуита Жана Лёрешона) опубликовал книгу Recreations mathematiques («Развлекательная математика»), которая стала более успешной, чем книга Баше, и послужила образцом для последующих изданий, среди которых работа Клода Мидоржа, изданная во Франции в 1630 году и переведенная на английский уже в 1633 году, или работа Даниэля Швентера, опубликованная в 1636 году в Германии. Но самой известной в XVIII и XIX веках стала книга Жака Озанама Recreations mathematiques et physiques («Математические и физические развлечения»), которую в 1725 году отредактировал и дополнил математик и историк науки Жан Этьен Монтукля.
Среди трудов XVIII века упоминания заслуживает книга Rational Recreations Уильяма Хупера («Рациональные развлечения», 1774), где впервые упоминается одна из задач об исчезновении клетки — великолепный пример того, как для решения простой с виду задачи используются интересные математические свойства.
Портрет математика и лингвиста Даниэля Швентера.
Хотя мы перечислили некоторых авторов книг об играх и занимательной математике, не будем забывать, что многие великие математики XVII—XIX веков сформулировали и впоследствии решили задачи, ставшие классикой жанра. Наиболее выдающиеся среди них — Исаак Ньютон (1642—1727), Леонард Эйлер (1707— 1783) и Карл Фридрих Гаусс (1777—1855).
Ньютон в своей книге Arithmetica Universalis («Универсальная арифметика»), написанной на латыни в 1707 году, наряду с важными для математики проблемами упоминает и о простейших занимательных задачах. Хотя наиболее известна так называемая задача о коровах, ниже мы приведем другую задачу, где показывается связь вероятностей и азартных игр. Одновременно бросается некоторое число обычных игральных костей. Вероятность какого из следующих событий наибольшая?
1) При броске 6 кубиков выпадет хотя бы одна шестерка.
2) При броске 12 кубиков выпадут хотя бы две шестерки.
3) При броске 18 кубиков выпадут хотя бы три шестерки.
Читатель с легкостью сможет решить эту задачу после того, как ознакомится с аналогичными задачами, о которых рассказывается в главе 3.
Эйлер, перу которого, возможно, принадлежит наибольшее число работ среди всех математиков, также написал множество занимательных книг, например по комбинаторике, посвященных греко-латинским квадратам. Речь идет о разновидности магических квадратов, в которых необходимо расположить n символов в квадрате n × n клеток так, чтобы в каждой строке и в каждом столбце находились все возможные символы. Можно сказать, что эти квадраты стали прообразом современных судоку. Но, вне всяких сомнений, самая известная из его задач — задача о кёнигсбергских мостах, которую Эйлер опубликовал на латыни в 1759 году в бюллетене Прусской академии наук. Эта задача дала начало теории графов. Граф — это графическое представление отношений между элементами множества, состоящее из вершин (элементов множества) и ребер, соединяющих вершины (связанные между собой элементы). Теория графов используется преимущественно для формулировки и решения задач оптимизации.
Задача о кёнигсбергских мостах звучит так: можно ли обойти все четыре части города, пройдя при этом по каждому из мостов ровно один раз? Эйлер показал, что такого пути не существует, и определил, при каких условиях подобные задачи имеют решение.
Наконец, Гаусс, внесший огромный вклад в математику, также уделял время занимательным задачам, среди которых задача о восьми ферзях: нужно расположить на шахматной доске восемь ферзей так, чтобы ни один из них не находился под боем другого. Также нужно найти количество разных решений и обобщить задачу для n ферзей и доски n × n. Используя интуитивный метод, а затем систематизировав его и переформулировав задачу в терминах перестановок, Гаусс показал, что задача имеет 92 различных решения.
На этой доске размером 8x8 показано одно из решений задачи о восьми ферзях.
В этой головоломке дан квадрат со стороной 8 клеток, разделенный на два треугольника и две трапеции. Из этих же фигур составляется прямоугольник размерами 5x13 клеток. Получается, что площадь квадрата (64 клетки) равна площади прямоугольника (65 клеток), и это «доказывает», что 64 равно 65. Читатель обнаружит, что составить подобный прямоугольник невозможно, и увидит, где же скрывается «дырка» площадью в 1 клетку.
Даже если считать парадокс решенным, он не перестает представлять интерес с точки зрения математики. Если проанализировать задачу подробнее, становится ясно, что она далеко не так проста. Если расположить длины сторон фигур в порядке возрастания, получим 3,5,8,13 — числа Фибоначчи. Эта последовательность имеет такое свойство: квадрат произвольного члена последовательности равен произведению предыдущего члена на последующий плюс (или минус) 1. Иными словами, an2 =аn-1 · аn+1+(-1)n+1. Таким образом, взяв квадрат со стороной, равной одному из чисел Фибоначчи, и прямоугольник, стороны которого равны предыдущему и последующему числам Фибоначчи, мы снова получим такой же парадокс. Этот парадокс разрешим, и подобное построение можно выполнить корректно для числа Ф, описывающего золотое сечение, которое тесно связано с числами Фибоначчи: взяв квадрат со стороной Ф и разделив его на четыре части, получим прямоугольник со сторонами 1 и Ф + 1. Площадь квадрата (Ф2) будет точно равна площади прямоугольника 1 · (Ф + 1).
Парадокс Хупера гласит, что из двух треугольников и двух трапеций, образующих квадрат, можно составить прямоугольник большей площади.
Игры и занимательная математика в XIX и XX веках
Игры и занимательная математика непрерывно развивались в течение XIX и начала XX веков, и спектр задач неуклонно расширялся. Среди авторов XIX века следует упомянуть Джеймса Джозефа Сильвестра (1814—1897), Льюиса Кэрролла (1832—1898), Эдуарда Люка (1842—1891) и Уильяма Роуза Болла (1850—1925). Рассказать обо всех подробно просто невозможно, и далее мы остановимся на книгах Кэрролла и Люка.
Преподобный Чарльз Латуидж Доджсон, известный как Льюис Кэрролл, автор сказок об Алисе, был математиком и профессором Оксфорда. Он обожал занимательную математику и планировал издать серию книг под названием Curiosa Mathematica («Математические курьезы»). Завершить этот труд ему не удалось. Во второй книге этой серии под названием «Полуночные задачи, придуманные в часы бессонницы» он демонстрирует выдающиеся способности, приводя решения как простейших и шутливых («Есть двое часов. Одни стоят, другие опаздывают на одну минуту. Какие часы показывают время точнее?»), так и довольно сложных задач («Даны три произвольные точки на бесконечной плоскости. Какова вероятность того, что они образуют тупоугольный треугольник?»).
Знаменитый автор «Алисы в стране чудес»Льюис Кэрролл также придумал бесчисленное множество математических игр.
Кэрролл был не только гениальным автором математических и логических игр, но и великим знатоком английского языка, что можно увидеть в его книгах об Алисе и в многочисленных придуманных им играх со словами. Одна из них, «Лестница слов», заключается в том, что нужно построить цепочку из слов с одинаковым количеством букв, каждый раз меняя по одной букве в слове. Например, можно превратить козу в волка: КОЗА — ПОЗА — ПОЛА — ПОЛК — ВОЛК.
Наиболее значимая роль в развитии математических игр принадлежит французскому математику Эдуарду Люка, специалисту по теории чисел и в особенности по числам Фибоначчи. Он является автором великолепного сборника Recreations mathematiques («Математические развлечения»). Эта книга содержит 35 разделов, посвященных математическому анализу игр и занимательным задачам. Среди игр, придуманных Люка, выделяются «Ханойские башни». Сам Люка, чтобы создать завесу тайны, на презентации игры в 1883 году приписал ее авторство китайскому профессору Клаусу (Claus) из колледжа Ли-Су-Стьян (Li Sou Stain). Обратите внимание, что имя несуществующего профессора — анаграмма фамилии самого Люка (Lucas), а название колледжа — анаграмма колледжа Сен-Луи (Saint Louis), где Люка преподавал математику.
Одна из последних книг XIX века по занимательной математике — Mathematical Recreations and Essays («Математические эссе и развлечения», 1892) Уолтера Роуза Болла, которая в XX веке стала одной из популярнейших книг по этой теме, выдержав более 12 изданий. Редактором одного из изданий в 1938 году выступил геометр Гарольд Коксетер.
Начальное положение колец в игре «Ханойские башни».
Одна из игр, о которых пишет Эдуард Люка в третьем томе своей книги о занимательной математике, принадлежит к типу игр, в которых нужно окружить своими фишками фишки другого игрока. К таким играм относятся «Охота на зайца» из книги Альфонсо X Мудрого и «Лиса и гуси» — очень популярная в викторианской Англии игра, известная еще с XV века.
В «военных играх» отсутствует элемент случайности. Эта игра рассчитана на двух игроков и была очень популярной среди французских военных в XIX веке. У одного игрока три белых фишки, у другого (ему принадлежит первый ход) — одна черная фишка. Фишки располагаются на доске из 11 клеток (начальное положение фишек показано на рисунке ниже). Задача белых фишек — окружить черную, которая пытается сбежать. Фишки могут перемещаться по пустым клеткам вдоль линий игрового поля, но белые фишки не могут отступать, в то время как черная может двигаться в любом направлении.
Игра кажется простой, и при первом знакомстве может показаться, что черной фишке легко скрыться от белых. Но тщательный анализ, проведенный Эдуардом Люка, показывает, что существует выигрышная стратегия для белых фишек — у них всегда есть в запасе минимум один ход, который мешает черной фишке сбежать. После изучения вариантов развития игры становится ясно, что максимальное число ходов равно 12, и количество существенно различных игр сокращается до 16. Кажется невероятным, что эта небольшая игра требует такой выверенности ходов от играющего белыми фишками. Он всегда будет выигрывать, если ему известна выигрышная стратегия.
Начальное положение фишек в «военных играх»
Рубеж XIX и XX веков ознаменован появлением трудов, принадлежащих наиболее плодовитым авторам в области занимательной математики: англичанину Генри Эрнесту Дьюдени (1857—1930) и американцу Сэму Лойду (1841—1911). Множество задач и головоломок, которые до сих пор приковывают внимание игроков, описаны в книгах именно этих двух великих авторов.
Генри Эрнест Дьюдени, помимо прочего, является автором «Кентерберийских головоломок» (1907) и «Математических головоломок и развлечений» (1917). Последняя содержит одну из лучших и обширнейших коллекций математических игр всех времен.
«Задача галантерейщика» Гэнри Дьюдени, в которой необходимо разрезать равносторонний треугольник на четыре части и составить из них квадрат.
Среди огромной коллекции головоломок Дьюдени выделяются криптарифмы — ребусы с числами, в которых цифры обозначаются буквами так, что одинаковым буквам соответствуют одинаковые цифры, а разным буквам — разные цифры. Один из известных примеров: РЕШИ + ЕСЛИ = СИЛЕН, причем наибольшая цифра в числе СИЛЕН не превышает 5. Нужно заменить буквы цифрами так, чтобы получилось верное равенство. (Ответ к этому криптарифму следующий: 9382 + + 3152 = 12534.)
Сэм Лойд опубликовал большинство своих задач в газетах и журналах. В одну книгу под названием «Энциклопедия головоломок» их собрал его сын Сэм Лойд-младший в 1914 году, уже после смерти отца. Среди головоломок Лойда — знаменитая задача о соединении 9 точек, расположенных в форме квадрата 3 × 3, четырьмя прямыми линиями, не отрывая карандаша от бумаги (либо то же для 16 точек, квадрата 4 × 4 и шести линий), а также множество задач о расположении чисел определенным образом. Например, нужно расположить числа от 1 до 8 в вершинах куба так, чтобы сумма чисел на каждых четырех вершинах одной грани была одинаковой.
Страница «Энциклопедии головоломок» Сэма Лойда.
Традиции Дьюдени и Лойда продолжились и в XX веке. Среди ведущих авторов первой половины XX века выделяется Морис Крайчик (1882—1957), составитель нескольких книг о математических играх и редактор бельгийского журнала «Сфинкс». После Второй мировой войны на этой арене господствовал Мартин Гарднер (1914—2010), автор множества книг и статей, публиковавшихся на протяжении более 25 лет в научно-популярном журнале Scientific American (русская версия носит название «В мире науки»). Почти до самой смерти Гарднер продолжал публиковать новые издания своих работ. Всего из-под его пера вышло свыше 70 книг, среди которых Origami, Eleusis and The Soma Cube («Оригами, элузис и кубики сома»), вышедшая в 2008 году. Помимо собственных работ, он познакомил читателей с многими интересными играми, среди которых «Жизнь» Джона Конвея и «Элузис» Роберта Эббота (1956).
В каждой игре существует некая цель и определенные правила, и в этом элузис не похож ни на одну из них, ведь цель этой игры — угадать правила, придуманные одним из игроков, причем каждая партия играется по новым правилам. Игра рассчитана на 4-8 игроков, и для нее достаточно трех колод карт и нескольких фишек. Партия состоит из числа раундов по числу игроков. В каждом раунде один из игроков раздает остальным по 14 карт, после чего превращается в «бога игры», создателя правил, и выкладывает последнюю карту на стол. Раздающий должен записать на листе бумаги секретное правило, по которому формируется последовательность карт. Правила могут быть очень простыми (красное — черное или чет — нечет), но их можно придумать бесчисленное множество: четные после красных и нечетные после черных, четыре четных разной масти и четыре нечетных одной масти. В интересах того, кто придумывает правила, — сделать их неочевидными, но и не слишком сложными, так как если никто не поймет правил, игра получится неинтересной. Остальные игроки пытаются понять правило, не говоря при этом ни слова. Они по очереди выкладывают по одной карте, пытаясь сформировать ряд из «правильных» карт. «Бог игры» сообщает, является карта «правильной» (в этом случае она кладется в конец ряда) или «неправильной» — в этом случае она кладется под последнюю правильную карту, а игрок, сделавший неверный ход, получает в качестве штрафа две новые карты из колоды. Начиная с 40-й карты, ошибочный ход наказывается выходом из игры.
Игра заканчивается, когда одному из игроков удалось избавиться от всех своих карт или когда все игроки покинули игру.
В книге «Десять игр, которые ни на что не похожи» Роберта Эббота подробно описана эта великолепная игра.
Среди других авторов XX века — Яков Перельман, один из основоположников русской школы занимательной науки, француз Пьер Берлокен и англичане Иэн Стюарт, Брайан Болт и Дэвид Уэллс. Каждый из них является автором множества книг и статей в различных периодических изданиях. Заслуживают внимания и испанские авторы, которые в своих книгах о математических играх и головоломках также попытались сделать математику ближе к широкой публике.Наиболее известные среди них — Мариано Матаиш, Мигель де Гусман и Фернандо Корбалан. Их труды вкупе с книгами уже упомянутых авторов — неистощимый источник задач, игр и математических развлечений.
Задача о костяшках домино от Якова Перельмана: четыре костяшки домино расположены в виде квадрата так, что суммы чисел на его сторонах равны. Задача — составить семь таких квадратов из полного набора домино.