Где заканчивается игра и начинается серьезная математика? <...> Для многих математика смертельно скучна и не имеет ничего общего с играми. Напротив, для большинства математиков это всегда игра, а также многое, многое другое.
В этой главе речь пойдет о взаимосвязи игр и вероятностей. Она стала очевидной сразу же, как только люди поняли возможность моделирования хаотических, случайных процессов. До этого в математике всегда говорилось о чем-то определенном, правильном, в чем можно быть уверенным. Можно сказать, что, когда были определены способы вычисления вероятностей, в математике началась новая эпоха. Этот раздел математики приобретал все большую важность по мере того, как становились известными все новые и новые области его применения. С приходом XX века предметами изучения и математического моделирования стали не только случайные процессы, но и хаос или нерегулярность фракталов.
Шевалье, который не хотел проигрывать. Азартные игры и появление вероятностей
В реальном мире сложные теории, касающиеся вероятностей, применяются в самых разных областях, так как в нашей жизни неопределенность встречается очень часто. Однако теория вероятностей берет свое начало именно в азартных играх. Можно утверждать, что теория случайных событий, основанная на понятии вероятности, начала формироваться во Франции в середине XVII века, в частности в 1654 году, в переписке Блеза Паскаля и Пьера Ферма, которые обсуждали вопросы, поставленные шевалье де Мере. Этот дворянин, знаток азартных игр, попросил Паскаля объяснить результаты некоторых азартных игр с игральными костями.
Антуан Гомбо, известный как шевалье де Мере (род. в Пуату, 1607—1685), посвятил большую часть жизни азартным играм и их анализу. Его интуитивные догадки много раз оказывались верными. По-видимому, он заработал приличную сумму различными азартными играми, где вероятность выигрыша и проигрыша одинакова. Например, такой считалась игра, где нужно было выбросить минимум одну шестерку броском четырех игральных костей. Однако Мере знал, что в этой игре один из игроков имеет преимущество. Он предложил новую игру, в которой требовалось минимум один раз выбросить две шестерки за 24 броска двух костей. Де Мере полагал, что преимущество одного из игроков здесь будет таким же, что и в исходной игре. Некоторое время спустя он убедился, что в действительности все происходит с точностью до наоборот. Поэтому примерно в 1654 году он обратился к Паскалю, чтобы тот нашел ошибку в его рассуждениях и объяснил, почему в новой игре у него не было преимущества.
Иллюстрация из «Книги игр» Альфонсо X Мудрого, на которой изображена игра в кости.
Несмотря на смерть в раннем возрасте, этот французский ученый, математик и философ внес большой вклад в различные сферы науки и человеческой мысли. Он был вундеркиндом и уже в И лет участвовал в научных встречах, которые организовывал Марен Мерсенн. В 1640 году Паскаль публикует работу «Опыт о конических сечениях», в 1649 году подтверждает результаты работ Торричелли об атмосферном давлении. В 1642 году он сконструировал счетную машину, чтобы помочь отцу, сборщику налогов в Нормандии. Эта машина, получившая название паскалина, — одна из первых рабочих счетных машин. Некоторые экземпляры сохранились до наших дней и демонстрируются в музеях науки и техники. Счетная машина, предназначенная для расчетов в торговле, заинтересовала многих — от королевы Швеции Кристины до философа Готфрида Вильгельма Лейбница, который усовершенствовал машину Паскаля.
С вопросов шевалье де Мере об азартных играх началась переписка Паскаля и Пьера Ферма, в которой впервые формулируется теория вычисления вероятностей (Паскаль называл ее геометрией случайности). В пяти письмах, датированных 1654 годом, анализируются азартные игры, изучением которых до этого уже занимался Джероламо Кардано.
В еще одной работе в этой области, «Трактате об арифметическом треугольнике» (1654), Паскаль проанализировал и доказал свойства арифметического треугольника, известного под названием треугольник Паскаля. Треугольник Паскаля несколько лет спустя использовал Ньютон для определения биномиальных коэффициентов. В 1655 году Паскаль завершает занятия математикой и наукой вообще и удаляется в монастырь, посвятив остаток жизни философии и религии.
Это один из величайших математиков всех времен, несмотря на то что он не был профессиональным математиком и при жизни ему не удалось опубликовать свои труды, которые стали известны лишь благодаря переписке с великими учеными того времени: Декартом, Мерсенном и Паскалем.
Ферма изучал юриспруденцию и большую часть жизни провел в Тулузе, где приобрел известность как королевский советник парламента (т.е. член высшего суда) этого города. Это позволило ему в свободное время отдаваться подлинному увлечению — математике. Область математики, которая интересовала его сильнее всего и в которую он внес наибольший вклад, — теория чисел. Одна из его теорем (для любого натурального числа n>2 уравнение xn + yn = zn не имеет натуральных решений) была доказана лишь в конце XX века. Он также внес заметный вклад в геометрию и определение экстремумов функций для решения задач оптимизации еще до того, как было создано дифференциальное исчисление. В его переписке 1654 года с Блезом Паскалем впервые предприняты попытки определить понятие вероятности.
Укрощение случайности. Математическое изучение вероятностей
Чтобы познакомиться с понятием вероятности и его основными свойствами, попробуем решить две задачи, предложенные шевалье де Мере. Точная формулировка первой задачи такова: какова вероятность выбросить 6 очков минимум один раз, бросив игральные кости четыре раза? Для решения этой задачи используется собственное свойство вероятности. Оно гласит: вероятность того, что произойдет некоторое событие либо обратное ему, равна 1. Поэтому сначала мы вычислим вероятность того, что ни в одном из бросков игральных костей не выпадет 6. Очевидно, что при броске одного кубика p(не 6) = 5/6. Так как при броске четырех костей каждый бросок не зависит от остальных, можно определить требуемую вероятность перемножением отдельных вероятностей каждого события. Искомая вероятность равна:
(5/6) • (5/6) • (5/6) • (5/6) = (5/6)4 = 625/1296 = 0,482 < 1/2.
Отсюда следует, что вероятность выпадения минимум одной шестерки равна
1 — (625/1296) = 671/1296 = 0,518 > 1/2.
Следовательно, выгоднее ставить на то, что после четырех бросков шестерка выпадет хотя бы один раз, как и предполагал шевалье де Мере.
Аналогичным способом можно решить и вторую задачу: какова вероятность выпадения двух шестерок при броске пары кубиков 24 раза? Сперва мы снова рассчитаем вероятность того, что после 24 бросков две шестерки не выпадут ни разу. При броске двух игральных костей p(не две 6) = 35/36. Следовательно, для 24 бросков получим:
p(не две 6) = (35/36)24 = 0,5086.
Следовательно, вероятность выпадения двух шестерок минимум один раз равна
1 - 0,5086 = 0,4914 < 1/2.
Чтобы решить эти две задачи, которые можно считать первыми задачами теории вероятностей за всю историю, мы использовали несколько базовых определений и свойств теории вероятностей.
Ахиллес и Аякс играют в кости. Одна из самых известных афинских чернофигурных амфор (VI век до н.э.) — еще одно доказательство древности этой азартной игры.
Лаплас — один из величайших математиков XVIII века. Он изучал богословие и математику, был профессором Военной академии в Париже и читал лекции в Нормальной школе. Лаплас был членом Французской академии наук и Лондонского королевского общества. Во время Великой французской революции принял руководящее участие в работах комиссии по введению метрической системы. По указу Наполеона он был назначен членом сената и канцлером, а в 1805 году был награжден орденом Почетного легиона. После реставрации Бурбонов Лаплас поддерживал Людовика XVIII, который в 1817 году присвоил ему титул маркиза.
Его основной труд по физике и математике и, возможно, наиболее значительный вклад в науку вообще — книга «Небесная механика» в пяти томах, опубликованных с 1799 по 1825 год. В этом труде Лаплас дополнил более ранние работы Ньютона, Галлея и Эйлера о гравитации и устойчивости Солнечной системы, то есть о неизменности средних расстояний планет от Солнца.
С 1780 года он занимался теорией вероятностей и в 1812 году опубликовал свою главную работу по этой теме — «Аналитическую теорию вероятностей», которая считается первой книгой по теории вероятностей. Успех этого труда побудил его в 1814 году написать «Опыт философии теории вероятностей» — популярное изложение «Аналитической теории вероятностей». В этой книге содержится полная и непротиворечивая аргументация в пользу детерминизма Вселенной. Лаплас писал: «В основе теории вероятностей — только здравый смысл, сведенный до исчисления. Нет никакой другой науки, которая точнее бы отражала наши размышления и результаты которой были бы более полезны».
Далее мы изложим эти свойства и покажем их на примере игры в кости. Многие из этих свойств зародились в уже упоминавшейся переписке Паскаля и Ферма, а затем были сформулированы Лапласом в его трудах по теории вероятностей.
Рассмотрим одну из первых задач в теории вероятностей. Роман и Павел играют в азартную игру, выигрывает тот, кто первым наберет 10 очков. В каждом раунде оба имеют равные шансы на победу. Победитель раунда получает 1 очко. После 17-й партии Павел выигрывает со счетом 9:8, после чего игру решено прекратить. Так как никому не удалось набрать 10 очков, игроки решают разделить сделанные ставки. Как справедливо разделить деньги между игроками? «Правильное» решение задачи может зависе