Динамика звёздных систем — страница 6 из 7

Теперь сведём воедино то, что мы узнали о приливном механизме формирования двойных звёзд и о взаимодействии одиночных звёзд с двойными. Приливный механизм приводит к формированию только очень плотных двойных систем, поскольку он «включается» только при тесном сближении двух звёзд. Плотные системы не распадаются, а при каждой встрече с одиночными звёздами передают им часть своей энергии и заставляют их двигаться более интенсивно. Это и есть тот самый эффект, который не позволяет центральным областям звёздных скоплений сжаться до «бесконечной» плотности. Когда в ядре звёздного скопления плотность возрастает, звёзды там начинают чаще встречаться друг с другом, чаще образуют двойные системы, которые начинают «разгонять» одиночные звёзды, и те выскакивают из этой плотной области, уходят на периферию скопления. Двойные могут выбрасывать и друг друга. Если продолжить аналогию звёздного скопления с газовым облаком, то двойные звёзды играют в скоплении роль источника тепла, не позволяющего сжиматься облаку. Попробуйте сами продолжить эту аналогию, вспомнив строение звезды (ведь это тоже газовое облако) и источник её стабильности — термоядерные реакции, происходящие в ядре. Что общего между формированием двойных звёзд в шаровом скоплении и превращением водорода в гелий?


Испарение шаровых скоплений

На периферии скопления звёзды довольно слабо связаны силой гравитации с остальными членами скопления; в результате их взаимодействия друг с другом то одна звезда, то другая теряют связь со скоплением и уходят от него навсегда в глубины Галактики. Физик назвал бы это испарением. Действительно, оставьте открытое блюдце с водой, и через неделю вы обнаружите его сухим: двигаясь хаотически и обмениваясь энергией, молекулы вылетают с поверхности воды и практически уже никогда не возвращаются обратно. Это и есть испарение. Поэтому можно говорить и об испарении звёздных скоплений.

Чтобы лучше понять звёздно-динамические процессы, задумаемся на минуту, почему испаряется жидкость. Если бы у всех молекул было достаточно энергии, чтобы покинуть друг друга, то это была бы уже не жидкость, а газ — облачко пара, вырвавшееся из котла, чтобы тут же рассеяться. Значит, в жидкости мало молекул, способных её сразу покинуть. Когда они вылетят, то, казалось бы, таких молекул не останется вовсе, и испарение прекратится. Но это не так. Мы знаем, что случайное взаимодействие частиц не просто выравнивает их скорости, а устанавливает максвелловское распределение по скоростям, при котором всегда есть как медленные, так и быстрые частицы, причём со стороны больших скоростей предела нет (см. рис. 6). Когда быстрые молекулы покидают ансамбль, равновесие нарушается, и новые молекулы через некоторое время (называемое временем релаксации системы) вновь заполняют область высоких скоростей, называемую в шутку «максвелловским хвостом». Разумеется, и эти молекулы быстро покидают ансамбль, т. е. улетучиваются. Для системы это не проходит бесследно: если из ансамбля «эмигрируют» самые шустрые, то средняя энергия (т. е. температура) оставшихся понижается. Без притока внешней энергии этот процесс сам себя останавливает. В комнате испарение продолжается, потому что вода в блюдце черпает энергию из окружающего пространства. А в звёздном скоплении?

Большую часть жизни звёздное скопление проводит в уединении и его можно считать изолированным. Не имея внешнего источника энергии, скопление вынуждено пользоваться внутренним, т. е. собственным гравитационным полем. Когда «горячие» звёзды покидают скопление, оставшиеся, более «холодные» (т. е. медленно движущиеся) немного приближаются к центру и за счёт этого «разогреваются». В результате скопление, теряя звёзды, не только сохраняет, но даже немного увеличивает свою «температуру», отчего темп потери звёзд возрастает ещё сильнее. Этот, на первый взгляд, парадоксальный факт окрестили отрицательной теплоёмкостью звёздных скоплений.

Впрочем, бывают ситуации, когда звёздное скопление находит и внешний источник энергии. Например, близкий пролёт мимо или сквозь массивное облако межзвёздного вещества вызывает приливный «гравитационный удар» по скоплению, в результате которого его звёзды начинают двигаться интенсивнее. Подобные удары скопление ощущает всякий раз, когда пролетает сквозь область неоднородного гравитационного поля: например, проходя вблизи ядра Галактики или сквозь галактический диск. Такие эпизоды ускоряют испарение скоплений. В результате скопление постоянно теряет звёзды, а взять новые — неоткуда. Поэтому рано или поздно каждое звёздное скопление истощается и погибает.

Продолжительность жизни звёздного скопления определяется временем его релаксации: чем оно короче, тем быстрее насыщается

«максвелловский хвост» быстрыми звёздами, которые тут же покидают скопление. Наблюдения показывают странную, на первый взгляд, дихотомию: в галактическом диске в основном встречаются скопления звёзд с малыми временами релаксации, а в окружающем диск гало почти все скопления имеют очень большие времена релаксации. Напомню, что в диске сосредоточены остатки межзвёздного вещества, из которого в нынешнюю эпоху формируются звёзды и их скопления, а гало населено очень старыми звёздами, образовавшимися в период ранней молодости Галактики. Имея в виду звёздные скопления, можно сказать, что среди стариков мы встречаем одних долгожителей, а среди молодёжи — в основном «дохлячков». Но ведь это совсем не странно: лишь те скопления прожили миллиарды лет, которые с самого начала имели большие времена релаксации, а их современники с короткими временами давно уже исчезли. Справедливость такого вывода совсем недавно подтвердилась наблюдениями: среди звёзд галактического гало были выявлены группы светил, движущихся по сходным орбитам. Вероятно, это остатки не очень давно распавшихся скоплений.

Астрономы обнаружили в Галактике около 150 шаровых скоплений, а всего их, по-видимому, не более 200. Это удача, что мы ещё застали «последних из могикан», современников формирования Галактики; через несколько десятков миллиардов лет из них не останется ни одного. Что тогда будут делать астрономы, кто им расскажет о днях бурной молодости Галактики? Впрочем, астрономам ещё повезло: например, последний динозавр вымер раньше, чем на свете появился первый биолог. А у нас, астрономов, в запасе ещё десятки миллиардов лет до тех пор, пока испарится последнее звёздное скопление.


ЛИНИИ ЖИЗНИ ШАРОВЫХ СКОПЛЕНИЙ

Нетрудно рассчитать, как быстро испаряются скопления, и проследить в будущем судьбу каждого из них. Оказывается, процесс испарения идёт быстрее в компактных, но не очень массивных звёздных скоплениях: в них звёзды чаще встречаются друг с другом, но движутся медленно, и поэтому при встрече успевают сильнее искривить траекторию друг друга: отсюда — короткое время релаксации и быстрое испарение скопления. А в массивных и рыхлых системах звёзды летают довольно быстро, но встречаются не часто; такие скопления живут дольше.

Компактность или рыхлость скопления обусловлена местом его рождения. Ведь Галактика — массивный конгломерат, который своим притяжением деформирует звёздное скопление; чем ближе оно к центру Галактики, тем должно быть компактнее, чтобы противостоять приливному эффекту, способному разорвать скопление. Но, с другой стороны, чем скопление звёзд компактнее, тем оно «горячее» и поэтому быстрее испаряется. Вывод: чем ближе к центру Галактики родилось звёздное скопление, тем оно должно быть компактнее, а значит быстрее будет разрушаться, причём первыми погибают самые лёгкие. Теоретическое ожидание таково: вдали от центра Галактики может сохраниться длительное время любое скопление — и большое, и маленькое, и лёгкое, и массивное; а вблизи центра Галактики выживают только компактные и при этом — массивные скопления. Это замечательно согласуется с наблюдениями: на плоскости М—R (рис. 8) каждая точка — шаровое скопление нашей Галактики; для удобства в логарифмической шкале указаны их реальные расстояния от центра Галактики и реальные массы. Количество звёзд в скоплении составляет N ~ ЗЛ7/Л7 .. На этой же плоскости нанесены теоретические линии, отделяющие область полного испарения скопления (ниже линии) для указанного возраста скопления. Можно назвать их «линиями жизни». Разумеется, все эти рассуждения легко записываются в виде формул, но здесь я этого делать не буду. Те, кого «задела» тема моего рассказа, найдут формальное изложение в книгах [13—16].

Возраст всех шаровых скоплений очень близок к возрасту Галактики. Поэтому для них всех современной линией жизни служит прямая, соответствующая возрасту Галактики — около 10 млрд. лет. Действительно, практически все скопления лежат выше этой линии. Но сама линия движется: пройдут эпохи, и она переместится выше, «съев» пограничные скопления. Через 1000 млрд, лет в Галактике останется менее половины из ныне живущих скоплений. А через 10000 млрд, лет практически ни одного не останется: все потеряют свои звёзды, испарятся и перестанут существовать как самостоятельные объекты. Жаль, ведь это одни из красивейших объектов Галактики. Правда, не исключено, что им на смену родятся новые. В некоторых галактиках это происходит, причём при весьма нетривиальных условиях.

Познакомимся ещё с одним динамическим эффектом, влияющим на эволюцию звёздных скоплений.



Динамическое трение



Индийский астрофизик-теоретик Субраманьян Чандрасекар, нобелевский лауреат, в основном работавший в США, обнаружил в 1943 году любопытный звёздно-динамический эффект, который он

назвал динамическим трением. Суть этого эффекта очень проста — странно, что его не обнаружили раньше.

Представим себе массивную частицу — это может быть одна громадная звезда или целое звёздное скопление, — которая летит через пространство, наполненное маленькими лёгкими звёздочками (как говорят астрономы, летит через звёздное поле). Каждая звезда, притягиваясь к этому массивному объекту, облетает его сзади по гиперболической траектории. Таким образом, звёзды, которые впереди объекта были рассеяны однородно, позади него как бы уплотняются в кильватерный след и создают избыточную плотность. Этот «хвост» всегда висит позади скопления, поэтому существует нескомпенсированная сила притяжения, которая тормозит массивный объект. Чем больше его масса, тем выше тормозящее ускорение. С сохранением энергии всё в порядке: она передается встречным звёздам, которые после облёта массивного объекта получают прибавку скорости. Кстати, такой «фокус» — разгон космического зонда, облетающего на встречном курсе планету, — хорошо известен и часто используется в космонавтике [17].