Домашние и офисные сети под Vista и XP — страница 6 из 19

Создание компьютерной сети

Глава 6Сетевое оборудование

Какое бы количество компьютеров ни планировалось подключить к сети, для того чтобы такое подключение стало возможным вообще, требуется некоторое оборудование. Мало того, чем больше компьютеров – тем больше такого оборудования потребуется.

В данной главе описывается практически все оборудование, которое может потребоваться для создания, обслуживания и подключения к сети. Простому пользователю, возможно, и не нужно знать такие подробности, однако если вы участвуете в создании сети или просто хотите получить новые интересные знания, то эта глава – для вас.

Сетевой адаптер

Чтобы пользователь мог подключить свой компьютер к локальной сети, в его компьютере должно быть установлено специальное устройство – сетевой контроллер.

Сетевой адаптер выполняет множество заданий, самые главные из которых – кодирование/ декодирование информации и получение доступа к информационной среде при использовании уникального идентификатора (МАС-адрес).

Сетевые карты бывают в виде плат расширения (рис. 6.1), которые вставляют в соответствующий слот.

Рис. 6.1. Сетевая PCI-карта


Также сетевые карты могут быть встроенными в материнские платы (рис. 6.2), что сегодня встречается повсеместно.

Рис. 6.2. Пример встроенной сетевой карты (верхний коннектор в центре)


Основными показателями сетевой карты можно считать поддерживаемый стандарт и тип подключения к компьютеру.

Поддерживаемый стандарт. Как вы уже знаете, существуют сети с разными сетевыми стандартами. Это означает, что сетевая карта должна обладать определенным типом коннектора (или коннекторов) и уметь работать с определенной скоростью обмена информацией. Наиболее важен в данном случае тип коннектора.

Тип коннектора сетевой карты зависит от выбора сетевой топологии и кабеля, по которому передаются данные. Существует несколько типов коннекторов: RJ-45 (для витой пары), BNC (для коаксиального кабеля) и ST, SC или FC (для оптоволокна). Они существенно различаются по конструкции, поэтому использовать коннектор не по назначению невозможно. Хотя существуют комбинированные сетевые адаптеры, которые содержат, например, RJ-45– и BNC-коннекторы. Но поскольку сеть на коаксиальном кабеле встречается все реже, то же самое происходит и с одноименными адаптерами.

Тип подключения к компьютеру. В персональных компьютерах сетевая карта обычно устанавливается в PCI-слот или в USB-порт (рис. 6.3). Мало того, практически любая современная материнская плата уже имеет интегрированный сетевой контроллер.

Рис. 6.3. Внешний вид сетевой карты, подключаемой к USB-порту


Сетевые адаптеры (рис. 6.4) для беспроводной сети по внешнему виду практически не отличаются от проводных вариантов, за исключением наличия гнезда для антенны – внутренней или внешней. Сетевые платы, которые подключают через USB-порт, встречаются достаточно часто, особенно это касается беспроводных вариантов.

Рис. 6.4. Внешний вид беспроводного сетевого адаптера


Часто на сетевой карте присутствует микросхема BIOS, с помощью которой можно даже загружать компьютер или выводить его из спящего режима. В последнем случае сетевая карта должна быть подсоединена к материнской плате специальным кабелем.

Концентратор

Когда сеть содержит более двух компьютеров, для их объединения необходимо использовать специальные устройства, одним из которых является концентратор. Свое применение концентратор находит, как правило, в сетях на основе витой пары.

Концентратор (он называется также хаб, повторитель, репитер) – сетевое устройство, имеющее два и более разъемов (портов), которое, кроме коммутации подключенных к нему компьютеров, выполняет и другие полезные функции, например усиление сигнала.

Концентратор служит для расширения сети, а основное его предназначение – передача поступившей на вход информации всем подключенным к нему устройствам сети.

Все подключенные к концентратору устройства получают абсолютно одинаковую информацию, что одновременно является и его недостатком – наличие нескольких концентраторов в сети засоряет эфир лишними сообщениями, так как концентратор не видит реального адреса, по которому нужно отослать информацию, и вынужден отсылать ее всем.

В любом случае концентратор выполняет свою задачу – соединяет компьютеры, находящиеся в одной рабочей группе. Кроме того, он анализирует ошибки, в частности возникающие коллизии. Если одна из сетевых карт приводит к возникновению частых проблем, то порт на концентраторе, к которому она подключена, может временно отключаться.

Концентратор реализует физический уровень модели ISO/OSI, на котором работают стандартные протоколы, поэтому использовать его можно в сети любого стандарта.

Существует два основных типа концентраторов.

• Концентраторы с фиксированным количеством портов (рис. 6.5) – самые простые. Выглядит такой концентратор как отдельный корпус, снабженный определенным количеством портов и работающий на выбранной скорости. Как правило, один из портов служит в качестве связующего звена между другим концентратором или коммутатором.

Рис. 6.5. Внешний вид концентратора с фиксированным количеством портов


• Модульные концентраторы (рис. 6.6) состоят из блоков, которые устанавливают в специальное шасси и объединяют кабелем. Возможна также установка концентраторов, не связанных между собой общей шиной, например, когда существуют разные локальные сети, связь между которыми не принципиальна.

Рис. 6.6. Внешний вид модульного концентратора


Преимущество модульного концентратора – сосредоточение всех концентраторов в едином центре управления, что позволяет быстро настраивать кабели и манипулировать ими в случае любых изменений в сети.

Поскольку для создания сети в основном используют коаксиальный кабель и кабель на основе витой пары, соответственно существуют концентраторы с BNC– и RJ-45-портами.

В зависимости от сложности концентратора на нем может присутствовать консольный порт (рис. 6.7), с помощью которого, используя специальное программное обеспечение, можно изменять некоторые параметры, конфигурировать порты или считывать их статистику.

Рис. 6.7. Внешний вид концентратора с консольным портом (в левой части)


Концентраторы могут содержать разное количество портов – от пяти до 48. Чем больше портов имеет концентратор, тем он дороже и функциональнее. В частности, существуют конструкции, позволяющие управлять ими напрямую (то есть не используя консольный порт) или поддерживающие резервную линию соединения с другими концентраторами.

Часто на концентраторе присутствует дополнительный порт, через который можно подключать другие сегменты сети. Например, к сети стандарта 100Base-TX можно подключить сеть или сегмент со стандартом 10Base-2.

Мост

Мост (также называется свич, переключатель) представляет собой довольно простое устройство (рис. 6.8), основное предназначение которого – разделение двух сегментов сети с целью увеличения ее общей длины (соответственно, количества подключенных повторителей) и преодоление при этом ограничений сетевой топологии.

Рис. 6.8. Внешний вид беспроводного моста


Как правило, мост имеет два или больше портов, к которым подключают сегменты сети. Анализируя адрес получателя пакета, он может фильтровать сообщения, предназначенные другому сегменту. Пакеты, предназначенные для «родного» сегмента, устройство попросту игнорирует, что также уменьшает трафик.

Для построения сети используют три типа мостов:

• локальный – работает только с сегментами одного типа, то есть имеющими одинаковую скорость передачи данных;

• преобразующий – предназначен для того же, что и локальный мост, кроме того, работает с разнородными сегментами, например Token Ring и 100Base;

• удаленный – соединяет сегменты, расположенные на значительном расстоянии, при этом могут использоваться любые средства соединения, например модем.

Мост используется и в проводных, и в беспроводных сетях.

Коммутатор

Коммутатор (рис. 6.9) объединяет в себе возможности концентратора и моста, а также выполняет еще некоторые полезные функции.

Рис. 6.9. Внешний вид коммутатора


Как уже упоминалось выше, концентратор, получив от какой-либо сетевой карты пакет данных, не зная о том, кому он адресован, рассылает его по всем подключенным к нему сетевым устройствам. Несложно представить, какой создается трафик, если в сети существует не один, а несколько концентраторов.

Коммутатор – более интеллектуальное устройство, которое не только фильтрует поступающие пакеты, но, имея таблицу адресов всех сетевых устройств, точно определяет, какому из них предназначен пакет. Это позволяет ему передавать информацию сразу нескольким устройствам с максимальной скоростью. Коммутаторы работают на канальном уровне, что позволяет использовать их не только в разных типах сетей, но и объединять различные сети в одну.

Поэтому для организации большой сети коммутаторы более предпочтительны. Кроме того, в последнее время стоимость коммутаторов заметно упала, поэтому использование концентраторов явно не оправдано.

Коммутатор может использоваться и в проводных, и в беспроводных сетях.

Маршрутизатор

Главная задача маршрутизатора (также называется роутер) – разделение большой сети на подсети, он имеет большое количество полезных функций и, соответственно, обладает большими возможностями и «интеллектом». В нем сочетаются концентратор, мост и коммутатор. Кроме того, добавляется возможность маршрутизации пакетов. В связи с этим маршрутизатор (рис. 6.10) работает на более высоком уровне – сетевом.

Рис. 6.10. Внешний вид беспроводного маршрутизатора


Таблица возможных маршрутов движения пакетов автоматически и постоянно обновляется, что дает маршрутизатору возможность выбирать самый короткий и самый надежный путь доставки сообщения.

Одна из ответственных задач маршрутизатора – связь разнородных сетевых сегментов локальной сети. С помощью маршрутизатора также можно организовывать виртуальные сети, каждая из которых будет иметь доступ к тем или иным ресурсам, в частности ресурсам Интернета.

Организация фильтрования широковещательных сообщений в маршрутизаторе выполнена на более высоком уровне, чем в коммутаторе. Все протоколы, использующие сеть, беспрепятственно «принимает» и обрабатывает процессор маршрутизатора. Даже если попался незнакомый протокол, то маршрутизатор быстро научится с ним работать.

Маршрутизатор может использоваться и в проводных, и в беспроводных сетях. Очень часто функции маршрутизации ложатся на беспроводные точки доступа (см. ниже раздел «Точка доступа» данной главы).

Модем

Модем также является сетевым оборудованием, и его до сих пор часто используют для организации выхода в Интернет.

Модемы бывают двух типов: внешние (рис. 6.11) и внутренние (рис. 6.12). Внешний модем может подключаться к компьютеру, используя LPT, СОМ или USB-порт.

Рис. 6.11. Внешний модем


Рис. 6.12. Внутренний модем


Внутренний модем представляет собой плату расширения, которую обычно вставляют в РСI-слот.

Модемы могут работать с телефонной линией, с выделенной линией и радиоволнами.

В зависимости от типа устройства и среды передачи данных отличается и скорость передачи данных. Скорость обычного цифрово-аналогового модема, работающего с телефонной аналоговой линией, равна 33,6-56 Кбит/с. В последнее время все чаще встречаются цифровые модемы, использующие преимущества DSL-технологии, которые могут работать на скорости, превышающей 100 Мбит/с. Еще одно неоспоримое преимущество таких модемов – всегда свободная телефонная линия.

Для связи с другим модемом используются свои протоколы и алгоритмы. Большое внимание при этом уделяется качеству обмена информацией, так как качество линий при этом достаточно низкое.

Модем может использоваться и в проводных, и в беспроводных сетях.

Точка доступа

Точка доступа (рис. 6.13) – устройство, используемое для работы беспроводной сети в инфраструктурном режиме. Она играет роль концентратора и позволяет компьютерам обмениваться нужной информацией, используя для этого таблицы маршрутизации, средства безопасности, встроенный аппаратный DNS– и DHCP-серверы и многое другое.

Рис. 6.13. Внешний вид точки доступа


От точки доступа зависят не только качество и устойчивость связи, но и стандарт беспроводной сети. Существует большое количество разнообразнейших моделей точек доступа с разными свойствами и аппаратными технологиями. Однако сегодня наиболее оптимальными можно считать устройства, работающие со стандартом IEEE 802.11g, так как он совместим со стандартами IEEE 802.11а и IEEE 802.11b и позволяет работать на скорости до 108 Мбит/с. Более перспективным и скоростным является стандарт IEEE 802.11n, устройства с поддержкой которого начинают появляться на рынке.

Антенна

В беспроводной сети антенна имеет огромное значение, особенно если к ней подключено активное сетевое оборудование, например точка доступа, мост, маршрутизатор и т. д.

Хорошая антенна чаще всего позволяет сети работать с максимальной отдачей, достигая при этом своих теоретических пределов дальности распространения сигнала.

Антенны бывают внутренние (встроенные) и внешние (рис. 6.14) и отличаются в основном своей направленностью и мощностью. Так, узконаправленная антенна позволяет достичь более дальней связи, что и используют, когда необходимо соединить два удаленных сегмента беспроводной сети.

Рис. 6.14. Внешний вид антенны для беспроводного оборудования (вверху – внешняя, внизу – внутриофисная)


Всенаправленная антенна позволяет увеличить радиус сети. При этом достигается равномерное расширение сети во все стороны, что позволяет охватить большее количество расположенных в радиусе сети беспроводных устройств.

Кабель

В проводной сети кабель используется для создания соответствующей физической среды для передачи данных. При этом часто бывает, что очередной сетевой стандарт подразумевает использование своего кабеля.

Таким образом, существует несколько типов кабелей, основными из которых являются кабель на основе витой пары, коаксиальный и оптоволоконный кабели.

Опять же, сетевой стандарт требует от кабеля определенных характеристик, от которых напрямую зависит скорость и защищенность сети.

В связи со всем вышеперечисленным основными отличительными параметрами кабеля являются следующие:

• частотная полоса пропускания;

• диаметр проводников;

• диаметр проводника с изоляцией;

• количество проводников (пар);

• наличие экрана вокруг проводника (проводников);

• диаметр кабеля;

• диапазон температур, при котором качественные показатели находятся в норме;

• минимальный радиус изгиба, который допускается при прокладке кабеля;

• максимально допустимые наводки в кабеле;

• волновое сопротивление кабеля;

• максимальное затухание сигнала в кабеле.

Все эти параметры входят в понятие категории кабеля. Например, кабель на основе витой пары бывает пяти разных категорий. В этом случае чем выше категория, тем лучше показатели кабеля, тем больше у него пропускная способность.

Коаксиальный кабель

Коаксиальный кабель (рис. 6.15), как правило, ассоциируется с такими стандартами сети, как «толстая» и «тонкая» Ethernet.

Рис. 6.15. Коаксиальный кабель


На рынке представлен достаточно широкий выбор коаксиального кабеля, однако для создания сетей используют только кабель разной толщины с волновым сопротивлением 50 Ом.[15]

Коаксиальный кабель состоит из следующих компонентов:

• центральный провод (жила);

• диэлектрический изолятор центрального провода;

• металлическая оплетка – экран (как правило, медный);

• внешний изолятор.

Чаще всего при построении сети применяют коаксиальный кабель марки RJ-58, хотя есть и другие, например RJ-8, RJ-174, RJ-178, РК-50 и т. д.

Кабель на основе витой пары

Кабель на основе витой пары (рис. 6.16) гораздо популярнее коаксиального, так как предлагает работу на более высоких скоростях передачи данных и лучшую расширяемость сети.

Рис. 6.16. Кабель на основе витой пары разных категорий


Основу такого кабеля составляют пары проводников, которые не только скручены между собой, но и закручены вокруг остальных таких же пар.

Каждой паре соответствует своя цветовая гамма, например первый из них – синий, другой – бело-синий. Кроме цветового отличия, каждая пара имеет свой номер и название.

При построении сети используют два типа кабеля – экранированный (Shielded Twisted-Pair, STP) и неэкранированный (Unshielded Twisted-Pair, UTP). Кроме того, кабели на основе витой пары делятся на шесть категорий, каждая из которых имеет определенные свойства. Чем выше категория, тем лучше характеристики кабеля. Например, для организации сети со скоростью передачи данных 100 Мбит/с используется кабель пятой категории.

Оптоволоконный кабель

Оптоволоконный кабель – кабель, строение которого коренным образом отличается от любых существующих кабелей.

В качестве физической среды передачи данных по кабелю используют свет (фотоны), сформированный лазером. В этом заключается главное преимущество оптоволокна, так как полностью исключаются электрические наводки (помехи). Таким образом, оптоволоконный кабель является самым защищенным, что очень важно для многих систем, например банков и государственных учреждений. Кроме того, учитывая малое затухание сигнала, длина сегмента оптоволоконного кабеля значительно превосходит длину любого другого кабеля и при определенных условиях может составлять более 100 км.

Однако достаточно высокая стоимость оборудования для формирования сигнала (света) и особенности прокладки (а именно, обжим коннекторов) сдерживают широкое распространение этой технологии. Тем не менее там, где требуется высокая скорость и защита, оптоволокно по праву заняло свое место.

Оптоволоконный кабель состоит из четырех частей: сердечника (сердечников), оболочки сердечника, прокладки и внешней оболочки (рис. 6.17). Сердечник, как правило, изготавливают из кварца или специального полимера. Свет, проходя через сердечник, отражается от оболочки, что позволяет проводить кабель с практически любым углом изгиба.

Рис. 6.17. Оптоволоконный кабель


Для механической защиты кабеля используют специальную прокладку, сделанную из пластика и кевралового волокна, придающего прочность. Дополнительную устойчивость к разрушениям обеспечивает тефлоновый слой.

Для прокладки оптоволоконных сетей используют два вида оптоволокна – одномодовыи и многомодовый, которые отличаются толщиной сердечника и оболочки. В зависимости от толщины сердечника кабели отличаются их количеством. Соответственно, одномодовыи кабель содержит один сердечник большей толщины, а многомодовый – несколько более тонких.

Однако главное отличие этих двух типов кабелей в их пропускной способности. Хотя многомодовый кабель при прокладке позволяет создавать участки с большими изгибами, его пропускная способность хуже, так как свет меньше отражается от оболочки сердечника. Кроме того, длина сегмента при этом значительно меньше (примерно в 50 раз).

Пропускная способность одномодового кабеля намного выше, однако он значительно дороже многомодового и более требователен к качеству прокладки.

Оборудование для создания коаксиальной сети

Для прокладки проводной сети одного кабеля недостаточно. Кроме этого нужны еще коннекторы, розетки, короба, панели и т. д. Кроме всего прочего, также требуются определенные инструменты для обрезки и обжима кабелей. Понятно, что при использовании беспроводной сети без всего этого можно обойтись. Исключение составляют лишь комбинированные сети (например, беспроводная сеть с сегментами проводной сети).

В данном разделе рассмотрены практически все инструменты и материалы, необходимые для создания сети на коаксиальном кабеле. Инструменты и расходные материалы для создания оптоволоконной сети не рассматриваются, так как она слишком дорога в создании и ее лучше оставить специализированным фирмам, имеющим соответствующий опыт работ.

Как ни странно, но наиболее простая и «древняя» сеть требует наибольшего количества расходных материалов. Это еще один аргумент в пользу того, чтобы использовать более современную и скоростную сеть.

Коннектор BNC

Существует несколько типов коннекторов для коаксиального кабеля. Наибольшее распространение получил обжимной коннектор BNC (Bayonet Nut Connector), применяемый для обжима концов коаксиального кабеля (рис. 6.18). Такой коннектор обеспечивает большую степень надежности, чем другие, например накручивающиеся на кабель.

Рис. 6.18. Коннектор BNC и его составные части


Т-коннектор

Т-коннектор используют для соединения основной кабельной магистрали с сетевой картой компьютера или другого сетевого оборудования в сети, построенной на коаксиальном кабеле.

Внешне Т-коннектор (рис. 6.19) похож на обычный, но имеет отводы для вклинивания в центральную магистраль.

Рис. 6.19. Т-коннектор


Т-коннектор всегда используют в паре с коннектором (продлевает сегмент кабеля) или терминатором (закрывает сегмент) (рис. 6.20).

Рис. 6.20. Т-коннектор, присоединенный к сетевой карте


I-коннектор

I-коннектор (рис. 6.21) служит соединителем сегментов кабеля без применения активного оборудования.

Рис. 6.21. I-коннектор


Данный коннектор применяют, когда нужно, например, дотянуть кабель до компьютера, но кабеля нет или не хочется заменять его более длинным.

Терминатор

Терминатор (рис. 6.22) – устройство, которое используется для заглушения сигнала и устанавливается на крайних точках кабеля.

Рис. 6.22. Терминатор


Если терминатор не установить, то сигнал, поступая вникуда, может привести не только к задержкам неопределенной длительности, но и к выходу сети из строя. Поскольку один из терминаторов необходимо заземлять, он имеет в своем составе цепочку с крепежным кольцом на конце.

Инструменты для работы с коаксиальным кабелем

Существуют разные инструменты для подготовки и обработки коаксиального кабеля. При использовании коннекторов с накручивающимся колпачком достаточно иметь соответствующий инструмент (рис. 6.23).

Рис. 6.23. Инструмент для обрезки кабеля и оголения его центрального проводника


В этом случае требуется лишь правильно обрезать кабель и очистить проводник.

Для обжима BNC-коннекторов необходимо иметь инструмент (рис. 6.24), сочетающий в себе функции обрезного инструмента, а также обеспечивающий возможность обжима центрального сердечника и металлического обжимного кольца.

Рис. 6.24. Инструмент для обжима коннектора BNC


Этот инструмент – универсальный, поэтому именно его чаще всего можно встретить в продаже.

Оборудование для создания сети на основе витой пары

В данном разделе рассмотрены практически все инструменты и материалы, необходимые для создания сети на основе витой пары.

Коннектор RJ-45

Коннектор RJ-45 (рис. 6.25) используют для обжима концов кабеля на основе витой пары.

Если в коннекторе BNC можно обжать кабель без инструмента, то с RJ-45 это сделать очень тяжело. Чтобы хорошо обжать кабель с таким разъемом, требуется достаточно сильно сжать ручки инструмента, который оголит проводники кабеля и прижмет их к проводящим дорожкам на коннекторе. Вручную это сделать тяжело, хотя можно встретить и таких «умельцев».

Рис. 6.25. Коннектор RJ-45 (слева) и защитный колпачок (справа)


Колпачок, надевающийся сверху на коннектор, используется для защиты проводников от пыли и других атмосферных явлений. Кроме того, он придает кабелю некоторую завершенность и красоту.

Розетка RJ-45

Розетки, которые часто называют компьютерными, – такая же составная часть компьютерной сети, как и бытовые розетки электрической сети. Это некое связующее звено, служащее в качестве контактной площадки. Прокладка сети стоит достаточно дорого, поэтому сеть должна быть максимально защищена от повреждений. Чтобы исключить возможность повреждения сегментов кабеля, их рекомендуется скрывать в специальные короба, окном из которых служит розетка (рис. 6.26).

Рис. 6.26. Розетка


Примечание

В случае с коаксиальным кабелем розетки не используются.

Как и кабели, розетки бывают разных категорий, отличающихся степенью защиты и другими техническими характеристиками. При этом разница между розетками разной категории видна даже невооруженным глазом.

Одно из видимых различий между показанными розетками заключается в наличии специальных площадок для крепления проводников в первой розетке (см. рис. 6.26), в то время как во второй (рис. 6.27) проводники фиксируются с помощью обычных шурупов, что не гарантирует качества соединения.

Рис. 6.27. Розетка одной из первых категорий


Кросс-панель

Кросс-панель (рис. 6.28) используется в сети с использованием кабеля на основе витой пары и служит связующим звеном между кабельной системой и сетевым оборудованием.

Рис. 6.28. Кросс-панель


На передней части кросс-панели находится определенное количество разъемов RJ-45, которые при необходимости соединяют с портами RJ-45 на сетевом оборудовании, например концентраторе или маршрутизаторе.

Задняя часть кросс-панели предназначена для монтажа всех приходящих к ней проводников к соответствующим разъемам на передней панели.

Размер кросс-панели напрямую зависит от количества расположенных на ней портов. При этом существуют панели с определенным количеством данных портов с таким расчетом, чтобы их без труда можно было размещать в монтажных шкафах.

Патч-корд

Патч-корд используют в сети на основе витой пары.

Патч-кордом (рис. 6.29) называют провод длиной до 5 м, соединяющий выход сетевой карты компьютера с разъемом на розетке. Как правило, этот кабель более мягкий, чем кабель, который идет от розетки к концентратору, маршрутизатору или другому сетевому оборудованию.

Рис. 6.29. Патч-корд


Такой кабель на обоих концах содержит коннекторы RJ-45, обжатые согласно принятым правилам в зависимости от выбранного стандарта.

Кросс-кабель

Кросс-кабель используется только в сети на основе витой пары. Он является «родным братом» патч-корда и отличается от него только меньшей длиной. Данный кабель применяют специально для соединения портов на любом активном сетевом оборудовании с разъемами на кросс-панели, которая физически связана с кабелем, ведущим к конкретному сетевому порту.

Инструменты для работы с витой парой

Для обжима кабеля на основе витой пары используют инструмент (рис. 6.30), похожий по принципу действия на инструмент для обжима коаксиального кабеля. Данное приспособление позволяет обрезать кабель, снимать внешнюю оболочку и, конечно, обжимать коннектор, то есть втискивать жилы проводников в контакты разъема.

Рис. 6.30. Инструмент для коннектора RJ-45


Очень часто этим инструментом можно обжимать разъемы для телефонной сети (RJ-11), имеющие более узкую форму и меньшее количество контактов.

При монтаже сетевых розеток используют специальный нож-вставку (рис. 6.31).

Рис. 6.31. Инструмент для зажима проводников в сетевой розетке


С помощью этого инструмента можно вставлять проводники кабеля в контактные площадки сетевой розетки.

Глава 7