Укрепив детали на панели, производят электрический монтаж устройства. Монтаж осуществляют проводом в надежной резиновой и хлопчатобумажной изоляции. Теперь, чтобы намагнитить железную или стальную деталь, необходимо вначале натянуть кусочек проволоки 0,05 мм на держатели предохранителя и закрыть пластмассовой коробочкой. После этого кладут во внутрь катушки деталь, которую нужно намагнитить и включают штепсель электрического шнура в сеть. Если теперь нажать на кнопку и придержать ее чуть-чуть, через катушку пойдет электрический ток и пластинка намагнитится. В связи с тем что сопротивление катушки мало, в цепи устройства произойдет резкий рост тока, и проволочка предохранителя сгорит. Для намагничивания следующей детали нужно вынуть штепсель шнура из сети и вставить новую проволочку предохранителя. Дальнейшие операции намагничивания производят так, как было описано выше.
Устройство получения магнитов с большой магнитной силой работает следующим образом. После включения питания выключателем SA1, начинается заряд конденсатора С1 через цепочку VD2, R5, R6, VD1. Как только конденсатор зарядится, а это произойдет через 15–20 с, то загорится индикатор HL1 «Готов», сигнализирующий о том, что напряжение на конденсаторе С1 достигло рабочей величины (120 В). Если теперь нажать на кнопку SB1 «Разряд», то откроется тиристор VS1 и через него и катушку-соленоид произойдет разряд конденсатора С1. Импульс тока, прошедший через катушку L1, создаст магнитное поле, которое и намагнитит заготовку из магнитного материала, находящуюся внутри соленоида.
Катушка L1 может иметь различную форму и число витков, а также может быть снабжена сердечником определенной конфигурации из ферромагнитного материала. Например, для намагничивания кольцевых магнитов катушка L1 должна содержать 20 витков провода МГШВ-0,35, намотанных на сердечник из электротехнической стали. В такой конструкции соленоида заготовки из сплава ЮНД4 намагничиваются до уровня 30–50 мТл.
Подбирая опытным путем значения конденсатора С1 и резистора R3, можно получить другие уровни остаточной индукции. Например, увеличения намагниченности можно добиться увеличением емкости конденсатора С1 и сопротивления резистора R3. Установку требуемой степени намагниченности детали можно сделать ступенчатой, например, выбирать переключателем конденсаторы необходимой емкости и резисторы определенного сопротивления.
Налаживание устройства заключается в подборе максимально возможного сопротивления резистора R1, при котором надежно открывается тиристор VS1 после зажигания индикатора «Готов» и нажатия, а также последующего отпускания кнопки «Разряд».
Для определения намагниченности детали можно собрать несложное устройство всего на трех распространенных транзисторах. В основе его работы лежит открытие, сделанное английским физиком М. Фарадеем еще в далеком 1831 году. Если вблизи катушки индуктивности, лучше всего со стальным сердечником, перемещать постоянный магнит, то на выводах катушки появится ЭДС, величина которой зависит от напряженности магнитного поля и числа витков катушки.
Теперь если этот сигнал подать на вход усилителя звуковой частоты, а на выходе усилителя включить индикатор, например, миниатюрную лампочку накаливания, то она засветится. Это и будет означать, что вблизи катушки находится намагниченный предмет. В устройстве катушка индуктивности является своеобразным датчиком намагниченности, который через конденсатор С1 подключен к усилительному каскаду на транзисторе VT1. Режим работы каскада по постоянному току задается резисторами R1 и R2. В зависимости от параметров транзистора, его статического коэффициента передачи и обратного тока коллектора, оптимальный режим работы устанавливается переменным резистором R1.
В эмиттерную цепь транзистора первого каскада включен составной транзистор VT2, VT3 из транзисторов разной структуры. Нагрузкой составного транзистора служит сигнальная лампа EL1. Для ограничения тока, проходящего через лампочку в цепь базы транзистора VT2, включен резистор R3.
Если вблизи катушки нет намагниченного предмета, то свечения лампы не видно. Но как только вблизи сердечника катушки появится намагниченный предмет, сигнальная лампа на мгновение вспыхнет. Чем больше предмет и сильнее его намагниченность, тем ярче вспышка лампы.
В качестве датчика лучше всего взять катушку с сердечником от электромагнитных реле РСМ, РЭС6, РЭС9 или других, сопротивлением обмотки не менее 200 Ом. Заметим, что чем больше сопротивление обмотки, тем более чувствительным будет индикатор. Неплохие результаты получаются с самодельным датчиком. Для его изготовления берется отрезок стержня диаметром 8 и длиной 25 мм из феррита 600НН (от магнитной антенны карманных приемников). На стержень, на длине примерно 16 мм, наматывают 300 витков провода ПЭВ-1 0,25-0,3, размещая их равномерно по всей поверхности. Сопротивление обмотки такого датчика примерно 5 Ом. Чувствительность датчика, необходимая для работы прибора, обеспечивается благодаря высокой магнитной проницаемости сердечника. Чувствительность зависит также от статического коэффициента передачи тока транзисторов, поэтому желательно использовать транзисторы с возможно большим значением этого параметра. Кроме того, транзистор VT1 должен быть с небольшим обратным током коллектора. Вместо МШОЗА можно применить транзисторы КТ315 с любым буквенным индексом, а вместо МП25Б – другие транзисторы серий МП25, МП26, обладающие коэффициентом передачи не менее 40.
Конденсатор С1 может быть любого типа, например, К50-3, К50-6, К50-12. Постоянные резисторы – МЛТ-0,25, переменный – СП-1. Сигнальная лампа – на напряжение 3,5 В и возможно меньший ток, например, 0,15 А. Батарея питания – 3 элемента типа 316, выключатель – любой конструкции.
Детали индикатора лучше всего смонтировать на небольшой печатной плате из фольгированного гетинакса толщиной 0,8–1 мм. Плату помещают в пластмассовую коробочку необходимого размера. На большей ее стороне устанавливают сигнальную лампочку, переменный резистор и выключатель, а на меньшей – катушку с сердечником таким образом, чтобы из отверстия стенки немного выступал наружу конец сердечника.
Во время работы индикатора переменным резистором вначале устанавливают небольшую яркость свечения лампы, а только потом подносят к сердечнику датчика испытываемый предмет. При проверке слабо намагниченных предметов яркость сигнальной лампы немного увеличивают, чтобы легче было заметить изменение ее свечения.Электрообработка пенопласта
Лобзик для резания пенопласта
Пенопласты обладают высокими тепло-, звуко– и электроизоляционными свойствами, газо– и водонепроницаемостью. Ко всему прочему, пенопласт очень легок и обладает хорошей плавучестью. Например, его удельный вес всего 0,02 г/см3, в то время как удельный вес сосны составляет 0,5 г/см3. Один кубический метр пенопласта весом в 30 кг способен держать на воде груз весом в 970 кг. Пенопласт получают путем газонаполнения и вспенивания соответствующего полимера, состоящего в основном из смолы с различными добавками. Благодаря таким уникальным свойствам пенопласт нашел широкое применение в строительстве, холодильном машиностроении и других отраслях народного хозяйства. В быту из него можно делать удобные приспособления для плавания, а также игрушки и модели, хорошие рыболовные поплавки и многое другое.
Пенопласт бывает плотный с мелкими порами и более мягкий и эластичный с ноздреватой фактурой. Плотный пенопласт лучше всего подходит для постройки различных моделей. Для игрушек и декоративных поделок плотность и фактура пенопласта подбирается в каждом отдельном случае.
Пенопласт легко распиливается ножовкой или лобзиком, его можно резать ножом. При резании ножовкой срез получается выкрошенный, а при использовании лобзика трудно получить прямой срез, особенно для толстых кусков. Лучше всего пенопласт резать на специальном станке при помощи раскаленной проволоки. В этом случае срез получается чистый и точный.
Станок для резания пенопласта
Станок для резания пенопласта состоит из основания, стойки, коромысла, направляющей планки, нити накаливания и резиновой полосы. Основание станка вырезают из дубовой доски или ДСП.
В полученной детали пропиливают два сквозных продольных паза. Просверливают отверстие под ролик фарфорового изолятора такой глубины, чтобы ролик вошел в это отверстие наполовину. По краям основания выжигают миллиметровую шкалу.
Стойку и коромысло делают из того же материала, что и основание станка. В стойке пропиливают паз и сверлят отверстия для оси коромысла. Готовую стойку крепят на основании. В коромысле сверлят отверстие для ролика и два отверстия для резиновой полосы. Сбоку коромысла сверлят отверстие для оси. После этого можно осуществлять сборку станка. Крепят коромысло к стойке. С этой целью вставляют в отверстия оси гвоздь подходящего диаметра и длины. К роликам подбирают болты с гайками и шайбами. В двух шайбах сверлят два отверстия 1,5 мм и делают с внутренней стороны небольшой пропил. Берут кусок никелевой проволоки, из которой делают спирали для бытовых нагревательных приборов и закрепляют его концы на двух шайбах со сделанными ранее отверстиями. После этого вставляют ролики в коромысло и основание станка и закрепляют на них шайбы с нитью накаливания с помощью болтов, гаек и шайб.
К болтам на коромысле и основании, к которым прикреплены концы нити накаливания, присоединяют по куску изолированного медного многожильного электропровода. Ролики необходимо обмотать изоляционной лентой так, чтобы болта с гайкой не было видно. Снизу доски шурупами укрепляют один конец толстой резиновой полосы. Другой конец резины пропускают через два отверстия на коромысле и натягивают нить накаливания. Нить должна быть натянута строго перпендикулярно основанию станка.
В заключение изготовляют направляющую планку размером 240x30x20 мм. В планке сверлят два отверстия 10 мм. Направляющую планку крепят к основанию двумя болтами М10 с барашковыми гайками. В нижней части основания станка в качестве ножек привинчивают четыре ролика.