Другая история науки. От Аристотеля до Ньютона — страница 17 из 32

В XVI веке европейские математики сумели наконец сравниться в мудрости с византийцами и превзойти их там, где успехи византийцев были невелики: в решении уравнений.

Уравнения разных степеней

Ровесник Леонардо да Винчи, профессор Сципион дель Ферро из Болоньи (ум.1526) посвятил всю жизнь решению различных алгебраических уравнений. Затруднения, связанные с неудобными обозначениями неизвестных величин, были огромны.

Как мы показали выше, важнейшие достижения математиков средневековой Европы относились к области алгебры, к усовершенствованию ее аппарата и символики. Региомонтан обогатил понятие числа, введя радикалы и операции над ними. Это позволяло ставить проблему решения возможно более широкого класса уравнений в радикалах. И в этой именно области были достигнуты первые успехи – решены в радикалах уравнения 3-й и 4-й степени.

Ход событий, связанных с этим открытием, освещается в литературе разноречиво. В основном он таков. Профессор университета в Болонье Сципион дель Ферро вывел формулу для нахождения положительного корня конкретных уравнений вида х3 + рх = q (p›0, q ›0). Он держал ее в тайне, приберегая как оружие против своих противников в научных диспутах, но перед смертью сообщил эту тайну своему родственнику и преемнику по должности Аннибалу делла Наве и ученику своему – Фиоре.

В начале 1535 года должен был состояться научный поединок между Фиоре с Николо Тарталья (1500–1557). Последний был талантливым ученым, выходцем из бедной семьи, зарабатывавшим себе на жизнь преподаванием математики и механики в городах Северной Италии. Узнав, что Фиоре владеет формулой Ферро и готовит своему противнику задачи на решение кубических уравнений, Тарталья сумел заново открыть эту формулу.

На диспуте Фиоре предложил Тарталье несколько вопросов, требующих умения решать уравнения третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Ферро, но и двух других частных случаев. Тарталья принял вызов и сам предложил Фиоре свои задачи. Результатом состязания было полное поражение последнего. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Фиоре не мог решить ни одной задачи, предложенной ему (с обеих сторон было 30 задач).

Вскоре Тарталья смог решать уравнения вида х 3 = рх + q (p›0, q ›0). Наконец он сообщил, что уравнения вида х 3 + q = px сводятся к предыдущему виду, но не дал способа сведения. Тарталья долго не публиковал своего результата. Причин этому было две: во-первых, та же причина, которая останавливала и Ферро. Во-вторых, невозможность справиться с неприводимым случаем. Последний состоит в том, что есть уравнения х 3 = рх + q которые имеют действительный положительный корень. Однако формула Тартальи не давала решения в том случае, когда надо было извлекать корень из отрицательных чисел, так как не было возможности правильно трактовать мнимые числа, получающиеся при этом. Неприводимый случай появлялся у Тартальи и в уравнениях вида х 3 + q = px.

Однако его труд не пропал даром. С 1539 года кубическими уравнениями начинает заниматься Кардано (1501–1576). Услышав об открытии Тартальи, он приложил много усилий, чтобы выманить тайну у осторожного и недоверчивого ученого для публикации в своей книге «Великое искусство, или о правилах алгебры». Только когда Кардано поклялся над Евангелием и дал честное слово дворянина, что не откроет способа Тартальи для решения уравнений и даже запишет его в виде непонятной анаграммы, Тарталья согласился раскрыть свою тайну. Он показал правила решений кубических уравнений, изложив их в стихах, причем довольно туманно.

Однако Кардано не только понял эти правила, но и нашел доказательства для них. Невзирая на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем «правила Кардана». А книга появилась в 1545 году.

Вскоре было открыто и решение уравнений 4-й степени. Итальянский математик Д. Колла предложил задачу, для решения которой известных до той поры правил были недостаточно, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу неразрешимою. Но Кардано предложил ее своему ученику Луиджи Феррари, который решил задачу, и даже нашел способ решать уравнения 4-й степени вообще, сводя их к уравнениям 3-й степени.

Столь быстрые и поразительные успехи в нахождении формулы решения уравнений 3-й и 4-й степени поставили перед математиками проблему отыскания решений уравнений любых степеней. Огромное число попыток, усилия виднейших ученых не приносили успеха. В поисках протекло около 300 лет. Только в XIX веке Абель (1802–1829) доказал, что уравнения степени п›4, вообще говоря, в радикалах не решаются.

На пути создания общей теории алгебраических уравнений и способов их решения стояли еще два препятствия: сложность, неудобство получаемых формул и неразъясненность неприводимого случая. Первое составляло чисто практическое неудобство. Его Кардано устраняет, предлагая находить корни уравнений приближенно с помощью правила двух ложных положений, по существу применяемого и в наши дни в виде простой, или линейной, интерполяции. Второе препятствие имеет более глубокие корни, а попытки его преодоления привели к весьма важным следствиям.

Плодотворная и смелая попытка справиться с неприводимым случаем принадлежит итальянскому математику и инженеру Р. Бомбелли из Болоньи. В сочинении «Алгебра» (1572) он ввел формально правила действий над мнимыми и комплексными числами.

Алгебраическая символика

Рост содержания математических знаний всегда связан с развитием математической символики. Последняя, если она достаточно хорошо отражает реальную сущность математических операций, активно воздействует на математику и сама приобретает оперативные свойства. Единую систему алгебраических символов, последовательно проведенную, первым дал, по-видимому, Виета.

Франсуа Виета (1540–1603) – французский математик, юрист по образованию и роду деятельности. Главный труд его жизни – «Введение в искусство анализа», огромное и чрезвычайно обстоятельно написанное сочинение по новой алгебре.

Правда, он не был полностью завершен.

Замысел Виеты определялся следующими соображениями: крупные успехи итальянских математиков в решении уравнений 3-й и 4-й степени достигнуты благодаря применению эффективных алгебраических приемов. Но число отдельных видов алгебраических уравнений огромно и растет, достигнув, например, у Кардано шестидесяти шести; каждый из видов требовал особых приемов. Необходимо найти общие методы подхода к решению алгебраических уравнений; последние должны рассматриваться в возможно более общем виде с буквенными коэффициентами. Кроме того, необходимо сочетать эффективность алгебраических приемов со строгостью геометрических построений, хорошо знакомых Виете.

Благодаря созданной им символике впервые появилась возможность выражения уравнений и их свойств общими формулами. Объектами математических операций стали не числовые задачи, а сами алгебраические выражения. Именно этот смысл вкладывал Виета в характеристику своего исчисления как «искусства, позволяющего хорошо делать математические открытия». Символы Виеты были вскоре усовершенствованы его младшими современниками, особенно Гэрриотом (1560–1621).

В сочинениях Виеты подводится своеобразный итог математики эпохи Возрождения. Но его алгебра была еще несовершенной. Ее очень утяжеляла видовая трактовка величин, обладающих размерностью. В ней нет общей трактовки степеней, все степени натуральные. Принципиальное разделение чисел и алгебраических величин не позволяло ему употреблять радикалы для величин, а лишь для чисел. Эту алгебру скоро вытеснила алгебра Декарта. Однако известно, что Ферма, например, придерживался алгебры Виеты, когда строил аналитическую геометрию.

Алгебраисты завершили символическое оформление своей науки и пробовали формулировать и решать проблемы общей теории алгебраических уравнений. Тригонометрия отделилась от астрономии, ее результаты получили достаточную степень общности. Полностью освоено геометрическое наследие древних. Математика постоянных величин к концу XVI века завершала цикл своего формирования.

Центр тяжести научных исследований сместился в область переменных величин. В математике наступал новый период.

Аналитическая геометрия Декарта

Столетие в жизни науки – большой срок, в течение которого успевает происходить труднообозримое множество событий. Воссоздание полной фактической картины – дело специалистов. Мы же можем в целях первоначального ознакомления лишь выделить главные линии развития, отметить закономерности этого развития.

В XVII веке начало учению о перспективе и проективной геометрии было положено в сочинениях Ж. Дезарга (1593–1661) и Б. Паскаля (1623–1662). Первую научную форму приобрела теория вероятностей, особенно благодаря открытию Я. Бернулли (1654–1705) простейшей формы закона больших чисел. Элементарная математика приобрела завершенную форму благодаря исчезновению риторической алгебры и замене ее символической, а также изобретению логарифмов.

Но главным и определяющим для XVII века является то, что математика преобразовалась, превращаясь в математику переменных величин. Произошло расширение ее предмета за счет включения в него движения и средств его математического отображения.

Рене Декарт (1596–1650) был выдающимся французским ученым: философом, физиком, математиком, физиологом. Образование, в силу принадлежности к древнему и знатному дворянскому роду, он получил в иезуитском колледже, славившемся постановкой обучения. Всю жизнь он продолжал совершенствоваться в науках, временами предаваясь им целиком. Целью естественно-научных занятий Декарта была разработка общего дедуктивно-математического метода изучения всех вопросов естествознания. При этом он совершенно отделил этот род своих занятий от метафизических рассуждений идеалистического характера. В границах физики Декарта единственную субстанцию, единственное основание бытия и познания представляет материя.

Природой материи, утверждал Декарт, является ее трехмерная объемность; важнейшими свойствами ее – делимость и подвижность. Эти же свойства материи должна отображать математика. Она не может быть либо численной, либо геометрической. Она должна быть универсальной наукой, в которую входит все, относящееся к порядку и мере. Все содержание математики должно рассматриваться с единых позиций, изучаться единым методом; само название науки должно отражать эту ее всеобщность. Декарт предложил назвать ее универсальной математикой (Mathesis universalis).

Эти общие идеи конкретизировались к 1637 году, когда вышло в свет знаменитое декартово «Рассуждение о методе», в котором, помимо общей характеристики метода естественно-научных исследований, выделены в отдельные части приложения метода к диоптрике, метеорам и к математике. Последняя часть носит название «Геометрия»; она и представляет для нас наибольший интерес.

В основу всей «Геометрии» Декарта положены две идеи: введение переменной величины и использование прямолинейных (декартовых) координат. Переменная величина вводится в двоякой форме, в виде текущей координаты точки, движущейся по кривой, и в виде переменного элемента множества чисел, соответствующих точкам данного координатного отрезка. А сама «Геометрия» Декарта состоит из трех книг. Первая – «О задачах, которые можно построить, пользуясь только кругами и прямыми линиями», начинается с кратких разъяснений общих принципов. Затем следуют правила составления уравнений геометрических кривых.

Природа говорит с нами на языке математики. Вернее сказать, природа обращается к нам сразу на многих диалектах единого математического языка. Мы называем эти диалекты арифметикой, геометрией, алгеброй или математическим анализом, но не всегда чувствуем их единство, а многих диалектов мы еще не знаем.

Следующее открытие связано с именем Кеплера.

Иоганн Кеплер (1571–1630) вошел в большую науку в 1600 году, когда императорский астроном Тихо Браге принял его на работу в Пражскую обсерваторию. Тщательно наблюдая за движением планет среди звезд в течение 30 лет, Браге накопил огромный запас точных данных, но не мог привести их в единую систему. Он быстро отверг давнюю геоцентрическую модель Птолемея и недавнюю гелиоцентрическую модель Коперника (в которой сохранилась система эпициклов, введенных Гиппархом). Но каковы истинные траектории полета планет в пространстве? В каком режиме они движутся по этим кривым? Браге поручил Кеплеру разобраться в движении Марса: оно более всего противоречит здравому смыслу, ибо временами Марс вдруг останавливается среди планет и пятится назад.

Кеплер сразу догадался: если орбита Марса не может быть окружностью, то, скорее всего, она – эллипс. Кажущееся движение Марса вспять можно объяснить просто: Солнце находится не в центре эллипса, а сдвинуто куда-то вбок. Куда? Видимо, в фокус эллипса, самую замечательную точку, связанную с этой кривой. Но в каком режиме движется Марс по своему эллипсу, можно выяснить только путем громоздких расчетов. Эта работа заняла у Кеплера 8 лет; он испытал и отверг около 20 разных гипотез, пока не нашел (в 1609 году) истинную: за равные отрезки времени вектор, соединяющий Солнце с Марсом, заметает в плоскости их общего движения секторы равной площади.

Чтобы справиться с огромным объемом вычислений, Кеплеру пришлось сделать два замечательных изобретения. Во-первых, он научился заменять умножение многозначных чисел сложением их логарифмов. Во-вторых, Кеплер научился вычислять путь, пройденный планетой за данное время, по известной (переменной) скорости планеты.

Переход от чисел к их логарифмам и обратно требует громоздких и точных таблиц. Сначала Кеплер составлял их сам; но в 1614 году появились подробные таблицы логарифмов Чарльза Непера. За 20 лет упорного труда этот шотландец рассчитал не только логарифмы чисел, но и логарифмы значений всех тригонометрических функций: они постоянно встречаются в астрономических расчетах.

Логарифмический метод

Умножение, деление, возведение в степень и извлечение корня – действия, гораздо более трудоемкие, чем сложение и вычитание, особенно тогда, когда нужно работать с многозначными числами. Настоятельная потребность в таких действиях впервые возникла в XVI веке в связи с развитием дальнего мореплавания, вызвавшим усовершенствование астрономических наблюдений и вычислений. На почве астрономических расчетов и возникли на рубеже XVI и XVII веков логарифмические вычисления, а в настоящее время они применяются повсюду, где приходится иметь дело с многозначными числами. Они выгодны уже при действиях с четырехзначными числами и совершенно необходимы в тех случаях, когда точность должна доходить до пятого знака. Большая точность на практике требуется очень редко.

Ценность логарифмического метода состоит в том, что он сводит умножение и деление чисел к сложению и вычитанию – действиям менее трудоемким. Возведение в степень, извлечение корня, а также и ряд других вычислений (например тригонометрических) также значительно упрощаются.

Выясним идею метода на примерах.

Пусть требуется помножить 10 000 на 100 000. Конечно, мы не станем выполнять этого действия по схеме умножения многозначных чисел. Мы просто сосчитаем число нулей в множимом (4) и множителе (5), сложим эти числа (4+5 =9) и сразу напишем произведение 1 000 000 000 (9 нулей). Законность такого вычисления основана на том, что сомножители суть (целые) степени числа 10: множится 10n на 10m; при этом показатели степеней складываются. Точно так же сокращенно выполняется и деление степеней десяти, здесь деление заменяется вычитанием показателей. Но так можно делить и умножать лишь немногие числа. Например, в пределах первого миллиона можно брать (не считая 1) лишь 6 чисел: 10, 100, 1000, 10 000, 100 000, 1 000 000. Чисел, допускающих подобное умножение и деление, будет гораздо больше, если взять вместо основания 10 другое, более близкое к 1. Возьмем, например, основание 2 и составим таблицу его первых 12 степеней.

Показатели степеней мы будем теперь называть логарифмами, а степени – просто числами.

Чтобы перемножить какие-либо два числа, достаточно сложить два их логарифма. Например, чтобы найти произведение 32 и 64, сложим стоящие рядом с 32 и 64 числа 5 и 6; 5+6 =11. У числа 11 находим результат: 2048. Чтобы разделить 4096 на 256, возьмем числа 12 и 8; вычитаем: 12-8 = 4. У числа 4 находим ответ: 16. Если ввести нулевую и отрицательную степени числа 2, то можно будет выполнять и деление меньших чисел на большие.

Хотя среди степеней числа 2 гораздо меньше пробелов, чем среди степеней числа 10, все же в таблице нет очень многих чисел. Поэтому практического значения и эта таблица не может иметь. Но если за основание взять число, гораздо более близкое к 1, чем число 2, то этот дефект будет устранен.

Примем, например, за основание число 1,00001. В пределах между 1 и 100 000 окажется свыше миллиона (1 151 292) его последовательных степеней. Если мы округлим значения этих степеней, сохранив лишь шесть значащих цифр, то среди миллиона округленных результатов окажутся все целые числа от 1 до 100 000. Правда, это будут лишь приближенные значения степеней. Но так как при умножении и делении пятизначных целых чисел нас будут интересовать только первые пять знаков результата, то составленные таблицы позволят перемножать, делить и т. д. пятизначные целые числа, а следовательно, и десятичные дроби, имеющие пять значащих цифр.

Именно так и были составлены первые таблицы логарифмов. Вычисление их потребовало многолетней неутомимой работы. Еще 400 лет назад этому нужно было посвятить всю жизнь. Но зато колоссально возросла производительность труда многих тысяч вычислителей, пользовавшихся раз навсегда составленными таблицами.

Швейцарец Бюрги (ок. 1590) составил первую таблицу логарифмов. Несколько позднее и независимо от него составил свои таблицы логарифмов шотландец Непер, который брал за основание число, очень близкое к единице. Но Бюрги опубликовал свою работу лишь в 1620 году, а таблицы Непера появились раньше, в 1614 году.

В настоящее время в таблицах логарифмов кладется в основание число 10, что дает ряд вычислительных преимуществ (так как наша нумерация – десятичная). При этом для получения целых чисел приходится брать дробные степени числа 10.

Идея составления таблицы десятичных логарифмов принадлежит Неперу и его сотруднику англичанину Бриггу. Они совместно начали работу по пересчету прежних таблиц Непера на новое основание 10. После смерти Непера Бригг продолжил и закончил эту работу, опубликовав ее полностью в 1624 году, поэтому десятичные логарифмы называются иначе бригговыми.

Таблицы Непера открыли путь к автоматизации всех арифметических вычислений; первым шагом в этом направлении стала привычная нам логарифмическая линейка. Ее изобрел в 1622 году англичанин Вильям Оутред, при этом он использовал десятичные логарифмы. Следующие шаги в автоматизации вычислений сделали француз Блез Паскаль (1642) и немец Вильгельм Лейбниц (1671), создавшие первые механические арифмометры, позволившие также умножать и делить многозначные числа. Следующий важный шаг в развитии вычислительной техники был сделан только в ХХ веке, когда появились компьютеры.

Цифровые механизмы

Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или «саламинская доска» по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая – десяткам и т. д.

Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде. Более поздней конструкцией была мраморная доска с выточенными желобками и мраморными шариками.

У китайцев в основе счета лежала не десятка, а пятерка, рамка китайских счетов суан-пан имеет более сложную форму. Она разделена на две части: в верхней части на каждом ряду располагаются по 5 косточек, в нижней части – по две. Таким образом, для того чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, и затем прибавляли одну в разряд единиц.

У японцев это же устройство для счета носило название серобян. Это IX век н. э.

Леонардо да Винчи (1452–1519) создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. По его чертежам в наши дни американская фирма по производству компьютеров в целях рекламы построила работоспособную машину.

Шотландский математик Джон Непер (1550–1617) изобрел таблицы логарифмов, что очень упростило деление и умножение, ибо для умножения двух чисел достаточно сложить их логарифмы. Тот же Непер предложил в 1617 году другой (не логарифмический) способ перемножения чисел. Инструмент, получивший название палочки (или костяшки) Непера, состоял из разделенных на сегменты стерженьков, которые можно было располагать таким образом, что при сложении чисел в прилегающих друг к другу по горизонтали сегментах получался результат умножения этих чисел.

Вильгельм Шиккард, востоковед и математик, профессор Тюбинского университета, в письмах своему другу Иоганну Кеплеру описал устройство «часов для счета», счетной машины с устройством установки чисел и валиками с движком и окном для считывания результата. Шел 1623 год. Эта машина могла только складывать и вычитать (в некоторых источниках говорится, что могла еще умножать и делить). Это была первая механическая машина. В наше время по его описанию построена ее модель.

Французский математик Блэз Паскаль (1623–1662) сконструировал счетное устройство, чтобы облегчить труд своего отца – налогового инспектора. Это устройство позволяло суммировать десятичные числа. Внешне оно представляло собой ящик с многочисленными шестеренками. Основой суммирующей машины стал счетчик-регистратор, или счетная шестерня. Она имела десять выступов, на каждом из которых были нанесены цифры. Для передачи десятков на шестерне располагался один удлиненный зуб, зацеплявший и поворачивающий промежуточную шестерню, которая передавала вращение шестерне десятков. Дополнительная шестерня была необходима для того, чтобы обе счетные шестерни – единиц и десятков – вращались в одном направлении.

Счетная шестерня при помощи храпового механизма (передающего прямое движение и не передающего обратного) соединялась с рычагом. Отклонение рычага на тот или иной угол позволяло вводить в счетчик однозначные числа и суммировать их. В машине Паскаля храповой привод был присоединен ко всем счетным шестерням, что позволяло суммировать и многозначные числа.

Англичане Роберт Биссакар в 1654-м и независимо от него в 1657 году С. Патридж разработали прямоугольную логарифмическую линейку, конструкция которой в основном сохранилась до наших дней.

Немецкий философ, математик, физик Вильгельм Лейбниц (1646–1716) создал «ступенчатый вычислитель» – счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни. При этом использовалась двоичная система счисления. Это был более совершенный прибор, в котором использовалась движущаяся часть (прообраз каретки) и ручка, с помощью которой оператор вращал колесо. Изделие Лейбница постигла печальная судьба предшественников: если им кто-то и пользовался, то только домашние Лейбница и друзья его семьи, поскольку время массового спроса на подобные механизмы еще не пришло. Машина являлась прототипом арифмометра, который был востребован с 1820 года до 60-х годов ХХ века.

Переход к современной математике

Успехи Кеплера в расчете пройденного планетой пути по известной скорости ее движения, о чем мы говорили в одной из предыдущих главок, стали первым шагом в новой науке – интегральном исчислении. Сам Кеплер воспринимал его просто: как способ вычисления площади фигуры, ограниченной плоской кривой, либо объема тела, ограниченного данной поверхностью. В 1615 году он опубликовал книгу со странным названием: «Новая стереометрия винных бочек, по преимуществу – австрийских». Это был первый сборник задач на вычисление интегралов; он содержал около ста разных примеров с подробными решениями.

Одна строчка в таблице интегралов от функций соответствует огромной таблице логарифмов чисел! Из этого видно, что для будущей математики исчисление функций гораздо важнее привычной арифметики и алгебры чисел. В новом мире функций, кроме арифметики и алгебры, действуют особые операции. Первые две из них – проведение касательной прямой к данной кривой и вычисление площади, которую ограничивает кривая, – угадал еще Архимед. Теперь Кеплер разработал удобную технику решения второй задачи. Но исчислять кривые так же просто и непринужденно, как числа, Кеплер не умел. Революцию в этом ремесле произвел в 1637 году другой великий математик, француз Рене Декарт.

В отличие от Кеплера, Декарт не любил долгих расчетов. Он предпочитал наглядно-геометрические рассуждения и хотел работать этим методом с любыми сложными кривыми, а не только с прямыми и окружностями, как делал Евклид. Для этой работы полезно уметь складывать, вычитать и умножать кривые между собой так же, как мы это делаем с числами.

Пьер Ферма из Тулузы (1601–1665) по основной профессии был юристом, а математикой занимался на досуге, читая книги классиков или современников и размышляя о тех задачах, которые те не заметили или не сумели решить. Понятно, что при таком способе работы Ферма ни в одной области науки не был первым. В математический анализ он вошел вслед за Архимедом и Кеплером, в аналитическую геометрию – вслед за Декартом, в теорию вероятностей вслед за Паскалем, а в теорию чисел – вслед за Диофантом. Но в каждом случае Ферма добавлял в уже готовую или только рождающуюся науку столь важные открытия, что превзойти его результаты могли только гении, порою много десятилетий спустя.

Например, Ферма заинтересовался простой задачей: при каких условиях функция достигает минимума или максимума в данной точке? Оказалось, что необходимо простое условие: производная от функции в этой точке должна быть равна нулю. В наши дни этот факт известен каждому старшекласснику. Но Ферма, распространив свое открытие на функции, зависящие от многих переменных, пришел к замечательному физическому открытию: свет движется по траектории, на которой производная по времени равна нулю. Значит, время движения света вдоль этой траектории – минимальное!

Лишь сто лет спустя Пьер Мопертюи и Леонард Эйлер открыли аналог принципа Ферма в механике; это стало первым шагом к объединению механики с оптикой в рамках квантовой теории.

Теорию чисел Ферма строил почти в одиночестве; из всех его современников только англичанин Джон Валлис интересовался ею. Но Ферма имел важное преимущество перед Валлисом и перед своим античным предшественником, Диофантом. Он хорошо знал аналитическую геометрию и оперировал уравнениями так же свободно, как числами. Поэтому он легко доказал «малую теорему Ферма» и узнал, что существуют конечные поля вычетов – системы чисел, устроенные (в смысле арифметики) еще удобнее, чем множество целых чисел.

Развивая этот успех, Ферма заинтересовался пифагоровыми тройками чисел, целыми решениями уравнения (хn + уn = zn). Существуют ли целые решения уравнений (хn + уn = zn) при n › 2? Диофант не нашел ни одного решения для n = 3. Ферма доказал, что таких решений не может быть. Оставалось обобщить метод Ферма для других простых показателей: 5, 7, 11… К сожалению, Ферма не стал проводить в этих случаях подробные расчеты и поэтому не увидел удивительных алгебраических препятствий на своем пути. Например, при n = 5 необходимо использовать комплексные числа: это первым заметил в конце XVIII века Адриен Лежандр, а Ферма всю жизнь сомневался в полезности таких чисел! Далее, при n = 23 доказательство «большой теоремы Ферма» натолкнулось на неоднозначное разложение комплексных чисел определенного вида на простые множители. Эту новую революцию в алгебре вызвал Эрнст Куммер в середине XIX века.

Не было тогда научных журналов для публикации новых открытий; все крупные ученые Европы узнавали о новых достижениях своих коллег из взаимной переписки. Они регулярно сообщали всем своим корреспондентам о том, какие факты открыли их далекие коллеги. Если новый факт привлекал чье-то внимание, то от автора требовали письменного доказательства. В противном случае сообщение повисало в воздухе.

Такой «любительский» стиль коллективной работы в науке был неизбежен и даже удобен, пока во всей Европе одновременно работали два-три десятка крупных ученых. Как только их стало больше – общую работу пришлось организовать с помощью научных учреждений.

История физики