Как и астрономия, астрология изучала положение небесных светил, хотя прежде всего ее интересовали такие устрашающие с точки зрения средневекового человека явления, как солнечные и лунные затмения, появление ярких комет, вспышки новых звезд, необычные сочетания планет. Астрологи должны были предугадывать, предвестием каких событий эти явления окажутся в жизни государств и отдельных лиц, ведь от того или иного расположения звезд зависят земные события, судьбы, исход предпринимаемых дел.
Основным способом предсказания будущего было составление гороскопов, таблиц взаимного расположения планет и звезд на определенный момент времени. Это можно было делать только после выявления места небесных светил в зодиаке и на горизонте и измерения расстояния между ними. Значит, астрологу необходимо было вести непрерывные наблюдения и производить довольно сложные вычисления, то есть он должен был обладать запасом знаний по астрономии и геометрии и уметь пользоваться астролябией. Таким образом, астрология вела вполне научные исследования.
Астролог Птолемей
Клавдий Птолемей – самый известный астроном древности, создатель «Альмагеста», труда, надолго определившего взгляды человечества на структуру Вселенной. Он автор множества произведений: «О появлении неподвижных звезд и собрание предсказаний», «О планетарной гипотезе», «Таблица царств» (хронология древних царств), «О гармонии» в трех книгах, «Об аналеммах», «Планисфера», «Оптика» в пяти книгах (в этом случае авторство Птоломея подвергается сомнению даже официальной историей), «География», «Готовые (астрономические) таблицы», «Схема и правила пользования готовыми таблицами», «О господствующих критериях».
Но, оказывается, он вскоре после «Альмагеста» написал книгу по астрологии – «Тетрабиблос», что значит «Четырехкнижие»; другое название труда – «Математический трактат в четырех книгах». Эта работа стала первым систематическим руководством по астрологии. (Свой статус основного пособия по астрологии «Тетрабиблос» утратил только с появлением «Введения в астрологию» Павла Александрийского.) А также Птолемея иногда называют автором сборника афоризмов об астрологии «Карпос, или Центилогиум».
Птолемей ли был автором этих книг, или нет, вопрос не очень ясный. В книгохранилищах Европы есть около 35 рукописных вариантов «Тетрабиблоса», некоторые вроде бы переписаны с птолемеева труда, но ряд рукописей не содержит имени автора. Здесь два варианта: или Птолемей написал этот труд, но некоторые переписчики опускали имя автора, или труд составлен неким анонимом, а некоторые переписчики для авторитетности придали ему имя Птолемей.
Значительно более многочисленными, чем греческие тексты «Тетрабиблоса», были его переводы. Самый старый, арабский, был выполнен Исхаком бен Хусейном в IX веке. Затем последовали латинские переводы Платона Тибуртинуса 1132 года и Платона де Тебальдиса в середине XIII века. Именно латинские переводы позволили европейцам познакомиться с «Тетрабиблосом» до того, как стали доступными первые печатные издания его греческого текста. А первое печатное издание латинского перевода появилось в 1484 году; до этого латинские переводы ходили в списках.
Многие историки науки сомневаются, что автор великого «Альмагеста» мог быть автором руководства по астрологии, поскольку это умаляет его авторитет как ученого. Вот пример типичного переноса современных взглядов на прошлое. Ведь астрология очень долго была вполне пристойной и уважаемой наукой, а не «научным заблуждением». Во времена эллинизма принципиальная возможность астрологических предсказаний ни у кого не вызывала сомнений, в нее верили все, а случавшиеся ошибки относили на счет неумения составителя предсказания или несовершенства используемой методики. Очень часто астрология была неотделима от таких наук, как медицина, химия, этнография, минералогия и ботаника.
Не утратила своего значения астрология и в более позднее время: Тихо Браге, Коперник, Кеплер, Региомонтан, Галилей, Лейбниц (список легко продолжить) либо сами занимались составлением гороскопов, либо пытались подвести под астрологию научное обоснование. Так что и в это время многие «светлые умы» не чурались ее.
Астрология в Византии
Человеку всегда хочется быть подготовленным к различным неприятностям, которые ожидают в будущем. Чтобы избежать несчастья, нужно посоветоваться со знающими людьми. Издревле жрецы занимались гаданием; астрология – один из способов методического гадания, позволяющего по положению светил предсказать будущее. В византийском обществе к астрологам обращались даже самые образованные люди; Прокопий Кесарийский, Агафий Миринейский и другие сообщают о значительном влиянии астрологов на население империи. Агафий описывает истерию, которая охватила жителей столицы из-за серии землетрясений и пророчеств астрологов, предсказывавших чуть ли не всеобщую гибель.
О широком распространении веры в астрологию свидетельствует огромное количество астрологических текстов, сохранившихся до нашего времени. Особенно большое число таких текстов дошло до нас от ранневизантийского периода: Юлиан Лаодикейский, Гефестион Фиванский, Павел Александрийский, Риторий, Иоанн Лид и другие оставили многочисленные астрологические произведения.
Полагают, что при составлении своих работ они черпали материал из египетской астрологической литературы, гекзаметров Дорофея Сидонского, учебной поэмы в семи книгах Антиоха Афинского, «Четверокнижия» Птолемея, труда Гермеса Трисмегиста о болезнях, возникавших под воздействием звезд, трактата Псевдо-Демокрита «Физика и мистика». Но так ли это? И Гермес и Птолемей могли жить позже своих «учеников», а схожие тексты возникли, поскольку они могли брать у каждого понемногу. Да к тому же сохранившиеся анонимные сочинения по астрологии, по существу, представляют собой варианты одних и тех же текстов. И надо еще учесть, что составители таблиц, дабы не вступать в конфликт с церковью, заменяли имена богов, подозрительные выражения, применяли криптографию, избегали говорить о судьбе.
Отношение к астрологии в византийском обществе было двойственным. Церковь была настроена к ней враждебно, поскольку доктрина астрологов противоречила христианскому вероучению о самоопределении души, о свободе воли и воздаяния за добродетели и пороки после смерти.
Византийцы же в массе своей продолжали верить в предсказания, хотя церковь и некоторые императоры, усматривая в астрологии покушение на авторитет религии, вели с нею борьбу. Но многие монархи держали при своих дворах астрологов. К ним во всех важных случаях обращались за советом.
Михаил V Калафат, задумав удалить из дворца усыновившую его императрицу Зою, обратился к астрологам, чтобы выяснить, благоприятствует ли время задуманному мероприятию. Уважал астрологов Константин IX Мономах. Он и сам следил за движением звезд и пытался определять по ним свою судьбу. К астрологам в критических обстоятельствах обращался Михаил VII.
А вот Алексей I Комнин объяснял небесные явления естественными причинами, относился к астрологам враждебно и даже изгнал их из столицы. Однако когда на небе появилась огромная комета, которую в народе считали вестником каких-то новых, необычайных событий, он был вынужден обратиться за разъяснениями подобного явления к сведущим людям, а именно к эпарху города Василию, довольно хорошо разбиравшемуся в учении астрологов.
В своей «Истории» Никита Хониат пишет, что Мануил I все слова астрологов принимал за изречения оракулов. В послании, направленном монаху монастыря Пантократора, Мануил Комнин упрекает его в ограниченности и необразованности и воздает хвалу верующему в звезды, стараясь в то же время согласовать астрологию с христианским вероучением.
С огромным доверием относились к астрологии и василевсы из династии Ангелов. По рассказу Никиты Хониата, Алексей III Ангел при неблагоприятном положении звезд даже отказывался от переезда из Большого дворца во Влахернский. Как подчеркивает историк, византийские императоры и шага не делали, не посоветовавшись с астрологами о положении звезд.
Представители ученой элиты, отвергая астрологию в принципе, нередко в конкретных случаях верили в небесные предзнаменования и в их влияние на жизнь людей.
С большим увлечением занимался астрологией выдающийся византийский ученый Лев Математик. Он вел постоянные наблюдения за движением небесных светил, стараясь по ним предугадать будущее. В состав его библиотеки наряду с научными трактатами была включена и книга Павла Александрийского «Введение в астрологию», которую использовали в качестве учебного пособия. В двух написанных им гекзаметрах Лев Математик восхваляет Павла Александрийского как знатока звезд и указывает, что именно он помог ему овладеть тайнами искусства предсказания.
Надо отметить, астрология давала в ряде случаев бесспорные результаты. По сообщению хронистов, с помощью своих знаний в этой области Лев Математик сумел предотвратить голод в Фессалонике, посоветовав его жителям произвести посев в определенный строго указанный им момент, что позволило вырастить обильный урожай. Предупреждал он и кесаря Варду об угрожавшей ему смерти, предостерегая его от участия в походе на Крит вместе с Михаилом III и Василием, так как роковые, зловещие знамения, наблюдаемые накануне, будто бы предрекают ему кончину. Прихожан, находящихся в церкви Богородицы, называемой Сигмой, Лев Математик предупреждал об опасности погибнуть при землетрясении, происшедшем в столице на третьем году царствования Василия I.
В некоторых манускриптах Лев Математик назван автором ряда астрологических работ о движении Луны и сейсмологии. Но вообще о его работах, посвященных астрологии, известно очень мало.
Михаил Пселл не признавал влияния местоположения и сочетания светил на ход дел в подлунном мире, однако полагал, что они воздействуют на погоду. Его современник Михаил Атталиат называл астрологов обманщиками. Как суетное учение и новейшее изобретение определяет астрологию и Анна Комнина, изучавшая ее, чтобы со знанием дела обличать тех, кто ею занимается. Свою судьбу она не хотела связывать с движением звезд.
В XII веке Иоанн Каматир составил две астрологические поэмы: «О круге зодиака» и «Введение в астрономию», посвященные императору Мануилу I. Материал для работы автор заимствовал главным образом из произведений Клавдия Птолемея, которого называет «премудрым и прекрасным». Он также использовал сочинения Гефестиона Фиванского, Ритория, Иоанна Лида.
В то время как геометрия находилась в полном пренебрежении мудрецов, ибо имела меньшее практическое значение, чем арифметика, да и сама по себе не была так тщательно обработана, – астрономия привлекала значительное внимание и служила предметом серьезных научных исследований. Разработка ее бесспорно достигла больших успехов, особенно в XV столетии. И вера в астрологию обусловливала прогресс в изучении астрономии.
От астрологии к астрономии
В целях разрешения специальной задачи составления гороскопа придумывались самые различные фантастические комбинации, однако главным в работе была достоверность в определении положения светил, так что основная проблема астрологии по сути дела должна быть отнесена к разряду научных. Она заключалась в определении относительного положения небесных светил, звезд и планет для какого-нибудь прошлого момента времени, например для момента рождения того человека, будущность которого нужно предсказать. В чем же отличие от астрономии? В том, что астрономия – средство предвидения будущих небесных явлений. А ведь разницы в расчетах нет. Конечно, мы теперь смотрим на астрологию иными глазами. Для нас она – некое мракобесие, и только. Но ведь именно она дала науке методику!
Само слово астрономия греческое и означает – звездный закон.
Астрология распространилась в странах, подпавших под греческое влияние. Она довольно быстро проникла в различные философские школы и моментально была усвоена преподавателями астрономии. «Тетробиблос» Птолемея был более популярен, чем его «Альмагест». Христианство оказалось не в состоянии противостоять этим верованиям. И это хорошо, так как способствовало изучению математики, ибо астрология нуждалась в астрономии, а эта последняя не могла обходиться без геометрии и арифметики.
У арабов ученые пользовались покровительством халифов и вельмож только потому, что от них ожидали предсказаний будущего, основанных на изучении движения небесных светил. После того варварского периода, когда главную цель астрономии составляло определение времени Пасхи, на латинском Западе стало обнаруживаться аналогичное влияние астрологии. Однако там это влияние распространялось не так быстро и явно, потому что находило менее благоприятную для себя почву, ведь западным ученым приходилось тщательно оберегать себя от ужасного обвинения в еретических заблуждениях, от которого не избавился после своей смерти даже такой человек, как Герберт (папа Сильвестр II).
Эллинистическая астрономия
Звезды, как бы прикрепленные к небесному своду и вместе с ним совершающие суточное вращение, практически не меняя взаимного расположения, издревле считались неподвижными. В их неправильных группах пытались найти сходство с животными, мифологическими персонажами, предметами домашнего обихода. Так появилось деление звездного неба на созвездия, различные у разных народов. Но, кроме таких неподвижных звезд, наблюдались семь подвижных светил: Солнце, Луна и 5 планет, которым сегодня присвоены имена римских божеств – Меркурий, Венера, Марс, Юпитер и Сатурн. В честь Солнца, Луны и 5 планет были установлены 7 дней недели, названия которых в ряде языков до сих пор отражают это.
Проследить движение по звездному пути Луны и планет было нетрудно, ведь они видны ночью на фоне окружающих звезд. Установить движение Солнца помогали наблюдения ярких звезд, которые появлялись перед восходом Солнца на фоне утренней зари (так называемые гелиакические восходы). Эти наблюдения в сочетании с измерением полуденной высоты Солнца над горизонтом с помощью простейших приспособлений позволили довольно точно определить путь Солнца среди звезд и проследить его движение, совершающееся с годичным периодом по наклонному к экватору большому кругу небесной сферы, названному эклиптикой. Расположенные вдоль него созвездия получили название зодиакальных (от греческого зоо – животное), так как многие из них имеют имена живых существ (Овен, Телец, Рак, Лев и другие).
В Китае звездное небо было подробно изучено и разделено на 122 созвездия, из них 28 зодиакальных. Но у большинства народов было 12 зодиакальных созвездий, и Солнце в течение года проходило каждое созвездие примерно в течение месяца. Луна и планеты также движутся по зодиакальным созвездиям (хотя и могут отходить от эклиптики на несколько угловых градусов в обе стороны).
В то время как движение Солнца и Луны всегда происходит в одном направлении – с запада на восток (прямое движение), движение планет гораздо сложнее и временами совершается в обратном направлении (попятное движение). Причудливое движение планет, не укладывавшееся в простую схему и не подчинявшееся элементарным правилам, казалось, говорило о существовании у них личной воли и способствовало их обожествлению древними.
Появлению теорий движения планет предшествовало основательное развитие геометрии, разработанной в Византии. И здесь мы вынуждены еще раз напомнить то, что уже говорили раньше: хронология человеческой истории недостоверна. В XVI веке некоторым реальным деятелям далекого прошлого были приписаны знания самого этого XVI века, то есть такие знания, которыми они не могли обладать; а сами деятели «оказались» стараниями хронологов в еще более далеком прошлом.
Вот список самых великих космологов древности и выдвигавшихся ими идей.
Какие из этих идей относятся к древности и какова степень этой древности – то есть насколько далеко она отстоит от нас, – тема для следующих исследований. Тут есть о чем подумать. Мы же пока останемся на той точке зрения, что «древние» авторы хронологически относятся ко временам ранней Византийской империи, но некоторые идеи приписаны их именам в XVI веке.
Евдокс Книдский, предшественник Аристотеля, создал теорию гомоцентрических сфер (дошедшую до нас лишь в пересказе Аристотеля), согласно которой каждая планета прикреплена к поверхности полой сферы, равномерно вращающейся внутри другой сферы, тоже вращающейся вокруг оси, не совпадающей с осью вращения первой сферы. В центре этих сфер находится Земля. Для представления сложного движения некоторых планет потребовалось несколько таких концентрических сфер, общее число которых доведено учеником Евдокса Калиппом до пятидесяти пяти.
Позже византийский геометр Аполлоний Пергский упростил эту теорию, заменив вращающиеся сферы кругами, и этим положил основу теории эпициклов, получившую свое завершение в сочинении Птолемея «Альмагест». Принималось, что все небесные светила движутся по окружностям и притом равномерно, а неравномерные движения планет объясняли их одновременным участием в нескольких круговых равномерных движениях, происходящих в разных плоскостях и с разными скоростями. Земля (о шарообразности и вращении которой якобы уже сообщила Пифагорейская школа) оказалась неподвижно покоящейся в центре Вселенной, что соответствовало непосредственному впечатлению от вида звездного неба.
Для практического применения теория эпициклов нуждалась в значениях величин, определяющих периоды обращения планет, взаимные наклоны их орбит, длины дуг попятных движений и т. п., которые можно было получить только из наблюдений, измеряя соответствующие промежутки времени и углы. Для этого были созданы различные приспособления и инструменты, сначала простейшие, такие как гномон, а затем и более сложные – трикветрумы и армиллярные сферы.
Утверждение геоцентрической модели связано прежде всего с именем Аристотеля. Первое высказывание о бесконечности Вселенной и бесчисленности ее миров приписывают Анаксимандру.
Первую гелиоцентрическую модель планетарной системы разработал, говорят, Аристарх Самосский, предвосхитив открытие Коперника. Тем не менее гелиоцентрическая система не имела достаточных основ, то есть попросту не была нужна, а геоцентрическая до такой степени удовлетворяла всех, что Аристарх не нашел сторонников. Поэтому учение его в дальнейшем оказало так мало влияния, что даже Коперник, по-видимому, не имел о нем понятия.
Известность Аристарху доставило определение относительного расстояния Солнца от Земли и Луны, тем более что подобное астрономическое измерение было произведено им первым. Когда Луна кажется с Земли наполовину освещенной, тогда Солнце, Земля и Луна образуют прямоугольный треугольник с вершиной прямого угла на Луне. Аристарх определил угол, образуемый зрительными лучами по отношению к Луне и Солнцу, в 87° и отсюда вывел отношение одного из катетов этого треугольника к гипотенузе, то есть отношение лунного расстояния к солнечному, равным от 1:18 до 1:20. Конечно, этот результат оказался ошибочным; в действительности указанное отношение приблизительно равно 1:400.
Архимед со ссылкой на Аристарха пытался вычислить размеры мира через счет очень больших количеств. Эту идею он изложил в работе «О числе песчинок». Вот введение к этой работе:
«Есть люди, о царь Гелон, которые полагают, что число песчинок бесконечно. Другие не признают их числа бесконечным, но думают, что невозможно указать числа большего, чем их количество. Я со своей стороны постараюсь доказать геометрическим вычислением, на которое ты удостоишь обратить внимание, что между числами, находимыми в книгах Цейксиппа, есть такие, которые превосходят число песчинок, вмещаемых телом не только большим, нежели Земля, но равным по величине всей Вселенной…
Некоторые утверждают, как тебе известно, что окружность Земли приблизительно равна 300 000 стадий. Я иду гораздо дальше и принимаю окружность в 10 раз больше. Подобно большинству астрономов, я предполагаю далее, что земной поперечник больше лунного, а солнечный больше земного. Наконец, я принимаю поперечник Солнца в 30 раз больше поперечника Луны, но не свыше. Именно, Евдокс определяет поперечник Солнца в 9 раз больше лунного, Фидий – в 12 раз, а Аристарх пытается доказать, что он более чем в 18 и менее чем в 20 раз больше. Я старался при помощи инструментов измерить угол, идущий от окружности Солнца к глазу наблюдателя. Измерение это нелегко, потому что нельзя в точности определить угла посредством глаз, рук и инструментов».
При помощи своего метода, который он описывает весьма подробно, Архимед находит, что видимая величина Солнца меньше 1/655 и больше 1/800 части круга зодиака. На основании этих измерений и предыдущих допущений он приходит к выводу, что расстояние Солнца от Земли не может быть больше 10 000 земных радиусов, а поперечник сферы неподвижных звезд не больше 10 000 000 000 стадий. Число песчинок, которое наполнило бы такую Вселенную, выражается у него в конце концов числом, состоящим, по нашему счислению, из 1 с 63 нулями. Хотя Архимед полагал, что все принятые им размеры несравненно больше действительных, но на самом деле расстояние Солнца он определил на 2/5 меньше действительного, так как отношение солнечного поперечника к лунному равно не 30:1, а приблизительно 400:1. В упрек этого ему нельзя ставить. Даже у Кеплера расстояние между Солнцем и Землей меньше, чем у Архимеда.
Эратосфен – современник Архимеда. Он стал первым выдающимся географом древности и вместе с тем астрономом и филологом. Из многочисленных сочинений Эратосфена для нас наиболее интересна «География» в трех книгах, вторая из которых содержит учение о поясах, о возможности кругосветного плавания и, кроме того, отчет о знаменитом измерении земной окружности, содержащий первое в истории изложение самого способа измерения.
Существовало наблюдение, что в начале лета в Сиене, в верхнем Египте, бывает вполне освещено солнечным светом дно глубокого колодца. Солнце находилось, стало быть, в этот момент в зените над Сиеной, тогда как в Александрии оно отклонялось от зенита на 1/50 окружности круга. Эратосфен полагал, что Александрия лежит прямо на север от Сиены, и отсюда заключил, что расстояние между обоими городами равно 1/50 земного меридиана. А так как путешественники считали это расстояние равным 5 000 стадий, то Эратосфен определил земную окружность в 250 000 стадий. К сожалению, длина стадий нам в точности неизвестна.
Гиппарх, уроженец Никеи, руководил школой в Александрии. Вместе с Аристархом и Птолемеем он составил блестящую тройку византийских астрономов. Многие ставят его даже выше Птолемея, называя систему последнего лишь искусным переложением трудов Гиппарха. Для объяснения неравномерности движения планет Гиппарх выдвинул Землю на некоторое расстояние из центра планетных путей и принял последние за эксцентрические круги.
Далее, он определил расстояние Земли от центра солнечного пути (эксцентриситет) в 1/24 радиуса и определил также положение земного приближения и удаления, что дало ему возможность вычислить солнечные таблицы. При сравнении своих наблюдений летнего солнцестояния с наблюдениями Аристарха Гиппарх определил длину года в 365 дней, 5 часов и 55 минут вместо 365 1/2 дней. При помощи эксцентрического пути Луны ему удалось также объяснить главнейшую неравномерность лунного движения и по вычислению элементов этого пути составить лунные таблицы. Параллаксы Солнца и Луны (углы, под которыми виден земной радиус с этих светил) он определил в 3 и 57 и из этого вычислил относительные расстояния их от Земли в 1200 и 59 земных радиусов, – второе довольно верно; первое же в 20 раз меньше действительного.
При сравнении своих наблюдений с более древними Гиппарх нашел, что одна звезда в Деве за 150-летний период времени изменила свою долготу на 2°, и далее заметил, что такое перемещение одинаково свойственно всем неподвижным звездам и что оно объясняется движением экваториального полюса вокруг полюса эклиптики. Для установления так называемого предварения равноденствий Гиппарх должен был произвести множество определений места неподвижных звезд. В звездном каталоге Гиппарха, которым впоследствии воспользовался Птолемей, действительно указано место более 1000 неподвижных звезд.
Гиппарх сперва наблюдал прямые восхождения и склонения светила и превращал их в долготы и широты: это значит, что он положил основания сферической тригонометрии. Но так как тогда надо было производить долгие и тяжелые вычисления, он придумал снаряд (астролябию), посредством которого мог уже прямо определять долготы и широты.
Историки науки ставят Гиппарху в упрек, что он вернулся к видимому движению Солнца и вновь «обрек» Землю на неподвижность. Не следует, однако, забывать, что при тогдашнем положении науки его теория была единственной надежной и вполне удовлетворительной. А кстати, почти все сочинения Гиппарха погибли, и о них мы знаем только из трудов Птолемея и других древних. Чьи труды, к сожалению, тоже известны лишь в поздних копиях.
Посидоний, родом из Сирии, учившийся философии в Родосе, предпринял вторичное градусное измерение по способу Эратосфена. Он заметил, что звезда Каноп в созвездии Корабль Аргонавтов касается горизонта в Родосе в то самое время, когда в Александрии она находится на 1/48 окружности круга над горизонтом. А так как расстояние между обоими городами считали в 5000 стадий, то он вычислил, что окружность Земли равна 210 000 стадий. Позднее он принял расстояние между Родосом и Александрией равным 3750 стадий и, внеся соответственную поправку, получил 180 000 для земной окружности – результат, который Птолемей приводит в своей «Географии», не указывая источника. Второе определение отличается не большей точностью, чем первое, оно настолько же меньше действительного, насколько первое больше него.
Египтянин Созиген занимался проблемой календаря. Считается, что именно он придумал юлианское счисление. Он делит год на 11 месяцев попеременно в 30 и 31 день, плюс 1 месяц в 28 дней, к которому каждые 4 года прибавляется один лишний день. Длина года оказывается равной в среднем 365 1/4 дней, что хуже определения Гиппарха, но лучше для составления календаря.
Считается, что Птолемей был смелее Гиппарха и, владея геометрическими знаниями своего времени, вообразил, что можно уже решиться на предположение об устройстве солнечного мира, и составил книгу, которая для всего Востока, а потом и для Запада стала самой авторитетной книгой по астрономии.
Неизвестно ни места, ни времени его рождения, ни подробностей его жизни. Некоторые писатели, основываясь на сходстве имен, утверждали, что он принадлежал к царственному роду Птолемеев, но скрывал знаменитость своего происхождения, желая прославиться своей ученостью, и потому провел всю жизнь в созерцании неба в одном из отделений египетского храма в Канопе. Главное свое сочинение Птолемей скромно назвал «Великое математическое построение по астрономии в 13 книгах». Ее сокращенное название было «Мэгистэ» (величайший, по-гречески). Арабские переводчики превратили его в «Альмагест», и это название осталось навсегда.
«Альмагест» пользовался на Востоке столь великим уважением, что победоносные халифы, заключая мир с византийскими императорами, требовали списки птолемеева творения.
Много позже Кеплер, увидев, как трудно согласовать выводы Птолемея с новейшими наблюдениями, не смог посягнуть на величие александрийского астронома и предположил, что за время, прошедшее от написания этого труда, произошли на небе значительные перемены. Но Галлей, Лемонье, Лаланд и Деламбр не были так снисходительны. Они обвиняли Птолемея в подделках наблюдений Гиппарха, в присвоении некоторых из них и в утайке тех, которые не согласовались с его теорией. С этого начались споры между первоклассными учеными, кончившиеся тем, что древняя слава Птолемея много убавилась, и первенство перешло к Гиппарху.
Византийская астрономия
Главным для византийцев, после работ Птолемея, было изучение, издание и комментирование трактатов предшествующих ученых. Для чего? Чтобы применять это знание на практике, прежде всего в сельском хозяйстве и мореплавании, а также для нужд астрологии. В эти времена греческие слова «астрономия» и «астрология» были почти синонимами, а то, что мы ныне понимаем под астрологией, называли «прогностикой».
Наиболее замечательным достижением в области практического использования астрономических знаний было усовершенствование Синесием Киренским, епископом Птолемаиды, астролябии – угломерного прибора, служившего для определения астрономической широты и долготы. Небесная сфера была им построена по данным Клавдия Птолемея и описана в «Слове о подаренной астролябии».
Феон Александрийский составил толкование к сочинениям астронома Евдокса и к «Альмагесту» Птолемея. Труды Птолемея комментировал и Папп Александрийский. Прокл Диадох оставил после себя не только труды по философии и математике, но и трактат по астрономии, где дал критический обзор исследований о движении небесных светил. По эстетическим и теологическим соображениям Прокл отверг теорию эпициклов Птолемея, но не принял и точку зрения Аристарха Самосского, высказавшего мысль о вращении Земли вокруг Солнца.
Иоанн Филопон, известный византийский математик, подготовил краткий очерк о построении и использовании астролябии. В отличие от астролябии Синесия Киренского, Иоанн Филопон создал прибор, по которому могли определять время даже ночью.
Стефан Александрийский (VI–VII века), приглашенный в Константинополь из Египта для преподавания философии и предметов квадривиума, составил комментарий к астрономическим таблицам Феона «Объяснение метода удобных таблиц Феона посредством индивидуальных приемов».
Помимо указанных трудов, принадлежавших перу известных византийских авторов, до нас дошло большое число анонимных статей по астрономии.
Астрономия была одним из предметов квадривиума, которые преподавали в школах. В IX веке в Константинопольском училище курс астрономии вел помощник Льва Математика. Константин VII, проявлявший большой интерес к наукам, поощрял занимающихся астрономией. При Константине IX ее преподавал Михаил Пселл. От IX века сохранились три копии «Альмагеста» Птолемея, который считался самой удобной для обучения книгой. Одна из них (ватиканская) была собственностью Льва Математика; на одном из листов есть запись: «Книга самого сведущего в астрономии Льва».
Новый расцвет наблюдается в царствование Мануила I Комнина, который весьма интересовался астрономией и астрологией. О преподавании астрономии свидетельствуют и сохранившиеся до наших дней школьные руководства, подготовленные виднейшими византийскими учеными для облегчения понимания сложных вопросов устройства мироздания.
От конца XI – начала XII века до нас дошел анонимный трактат, названный его первым исследователем «Учебником космологии и географии». В нем наряду с другими вопросами много места отведено обсуждению кардинальных проблем средневековой астрономии, таких, как формы и размеры Вселенной, природа небесных тел, количество сфер неба, форма, размеры и местоположение Земли. Автор учебника придерживается геоцентрической системы мира. Он отвергал теорию о существовании множества миров. Учебник был весьма популярен в Византии и сохранился в большом числе манускриптов, написанных в основном в XV веке.
Взгляды византийцев на строение Вселенной формировались под воздействием, с одной стороны, эллинских теорий, а с другой – библейских воззрений. При этом образованная элита, как правило, придерживалась первых концепций о форме Земли, признавая ее шарообразной, а народные массы разделяли взгляды Священного Писания, согласно которым Земля имела форму диска, а небо – полусферы. Виднейший византийский ученый, патриарх Фотий называл «нелепостями» утверждения Косьмы Индикоплова, который рассматривал Землю как прямоугольный параллелепипед, на краях которого покоится небесный купол. Сам Фотий был на стороне тех, кто отстаивал учение о сферичности Земли и неба. Эта доктрина была воспринята и Иоанном Дамаскином.
Михаил Пселл был убежденным сторонником геоцентрической системы. Характеристику структуры мироздания он начинает с рассказа о небе, затем переходит к неподвижным звездам и зодиакальным созвездиям, к сферам планет, Луны, затем к областям огня, воздуха, воды и земли. Описывает Михаил Пселл и природу небесных тел. Следуя за Аристотелем, излагает учение об эфире, считая, что в небесных сферах преобладает воздушное начало, а в звездах – огненное. Тепловое излучение Солнца он объясняет не тем, что оно является раскаленным, а огненными испарениями, которые возникают вокруг него при движении. Из этих испарений образуются кометы, материя которых аналогична материи Млечного Пути.
Указывает Михаил Пселл и приближенные периоды обращения планет, которые в соответствии с пифагорейской теорией музыкально-математической гармонии космоса соотносятся как октавы, квинты и кварты. Определяет он и окружность Солнца, Луны и Земли и приводит их соотношение. Эти данные, по его словам, он приводит «согласно опытнейшему в астрономии Аристарху».
Близка к естественно-научным трудам Михаила Пселла по взглядам на устройство Вселенной работа Симеона Сифа «Общий обзор начал естествознания». Эта работа была найдена в составе манускрипта, хранившегося в библиотеке Святоградского подворья в Стамбуле; научное издание осуществлено в 1939 году.
Свою работу Симеон Сиф начинает с описания сферической формы Земли. Рассматривая проблему движения небесных тел, Сиф отвергает тезис о вращении звезд вокруг своей собственной оси и принимает положение, что они движутся за Солнцем, которое является как бы их небесным вождем по велению Бога. Особо он подчеркивает, что при движении Солнца возникают вокруг него испарения, которые являются источником зарождения комет. В движении небесных светил Сиф усматривает физический, а не психический характер; основываясь на этом, как и Иоанн Дамаскин, отрицает теорию эллинских мыслителей об одушевленности небесных светил. Вопрос о природе неба и звезд разрабатывает на основании концепций Платона и Аристотеля. О причине света звезд Симеон Сиф не высказывается определенно, приводя две точки зрения: или они заимствуют свой свет от Солнца, или имеют свой свет.
Особо следует отметить, что материал трактата Симеона Сифа свидетельствует о знании им прецессии движения точки равноденствия на эклиптике, правда, в неточном масштабе одного градуса в течение 30 лет.
Интересные, отличающиеся оригинальностью сведения по астрономии содержатся в космографическом трактате Евстратия Никейского (ок. 1050–1120). Он был учеником Иоанна Итала, автором ряда богословских произведений, приближенным советником Алексея I Комнина и даже официальным теологом при императоре. Анна Комнина с большой похвалой отзывается о нем, называя его «мужем, умудренным в божественных и светских науках, превосходящим в искусстве диалектики стоиков и академиков».
По своему содержанию и кругу разбираемых проблем работа Евстратия Никейского обнаруживает поразительное сходство с уже упомянутым анонимным «Учебником по космологии и географии». В ней идет речь о движении небесных светил, о числе небесных сводов (их, как и в учебнике, насчитывается 9), о планетах и зодиакальных созвездиях. Говорится об атмосферных явлениях, даны объяснения происхождению дождя, снега, града, грома, молнии.
И о положении Земли Евстратий Никейский высказывает точку зрения, аналогичную утверждению, приведенному в учебнике: Земля расположена в центре Вселенной в подвешенном состоянии. Ее поддерживают божественный промысел и образуемые вращательными движениями звезд потоки ветра, которые сжимают Землю и препятствуют разъединению ее частей. Расстояние от Земли до неба в обоих произведениях определенно одинаково, оно равно 27 375 000 стадий. Земля и вся Вселенная представлена в них в форме яйца. Евстратий Никейский, как и названные выше византийские ученые, является сторонником геоцентрической системы мира.
Однако из речи, произнесенной Михаилом Италиком в 1143 году при коронации Мануила I Комнина, следует, что по крайней мере в это время знали не только геоцентрическую систему Клавдия Птолемея, но и гелиоцентрическую Аристарха Самосского. В этой речи Михаил Италик сравнивает императора с Солнцем, расположенным, по его мнению, в центре Вселенной.
Идея европоцентризма настолько глубоко сидит в сознании историков науки, что они искренне считают, будто в Византию шел поток латиноязычной образованности в результате появления на Балканах францисканцев и доминиканцев, развернувших свою деятельность в захваченном латинянами Константинополе (XIII век). А мы видим, что культура шла как раз из Византии в Западную Европу.
После реставрации империи при Палеологах латинские монахи были выселены из столицы, однако к началу XIV века они вновь там обосновались. Двуязычные представители этих орденов, среди которых были и лица греческого происхождения, играли важную роль в делах, связанных с унией церквей. Но и в это время основной поток знаний шел с Востока на Запад, а не наоборот.
С конца XIII века Константинополь возвращает себе славу культурного центра. Сюда устремляются ученые из бывших провинций империи. Из Гераклеи Понтийской прибыл астроном Никифор Григора (1293–1361). Из итальянской Калабрии – «возмутитель спокойствия» Варлаам (1290–1348), в числе прочего занимавшийся астрономией. Можно говорить о необычайно возросшей интенсивности интеллектуально-духовной деятельности византийцев в XIV–XV веках. Так, из 435 известных нам на протяжении всей истории империи (исключая эллинский период) деятелей византийской культуры на XIV век приходится 91 человек, а на XV – до 200.
О сочинениях Никифора Григоры скажем подробнее, ведь это – памятник неприятия византийцами западной культуры. Так, например, Григора представляет Варлаама Калабрийского как невежду в астрономии, да и вообще выставляет его в карикатурном виде, хотя Варлаам считается автором двух трактатов о солнечных затмениях. Тут была и личная причина: именно в этих своих трактатах Варлаам указал на путаницу в добавлениях, сделанных Григорой к «Гармонии» Птолемея. Нам это важно, поскольку на самом деле «Гармония» Птолемея была незавершенной, и Григора просто дописал за «древнего грека» главы 14–15 в Третьей книге. Возможно, таким образом и была создана большая часть наследия великих эллинов.
Григоре принадлежат также два сочинения об астролябии. В одном из них он излагает способ конструирования астролябии, в другом, написанном несколько позднее, говорит о ее практическом применении и расчетах. Трудно сказать, занимался ли сам Григора астрономическими наблюдениями. И Григора, и Варлаам были крупнейшими знатоками птолемеевской астрономии и использовали свои познания главным образом в полемике и ради престижа.
Определенный интерес представляет и календарная реформа, предложенная Григорой. Проблемы хронологии и определения даты Пасхи всегда были важны для византийцев. Юлианский календарь, лежавший в основе литургического, постепенно опережал весеннее равноденствие. Пасха сдвигалась к лету, грозя нарушить традиционную весеннюю датировку. Предложенная Григорой календарная реформа, основанная на точных астрономических расчетах, должна была устранить этот недостаток. Он предвосхитил знаменитую григорианскую реформу, проведенную более чем через 200 лет папой Григорием XII, но в Византии она не была реализована.
В конце XIII века в византийской астрономической литературе появляется новое направление, связавшее ее через Трапезунд с арабской астрономией. Начало было положено Григорием Хиониадом, врачом и астрономом, побывавшим в середине 80-х годов в Тебризе и привезшим оттуда арабские астрономические рукописи.
Около 1347 года сочинения Хиониада комментировал Георгий Хрисококк. Техническая терминология его сочинений определенно указывает на элементы восточного происхождения, восходящие к персидскому оригиналу. Эта терминология широко распространилась и стала со временем необходимой составной частью греческих астрономических сочинений, число которых значительно возросло в палеологовский период. Появились и монументальные труды синтетического характера – такие, как «Астрономическое трехкнижие» Феодора Мелитениота, главы патриаршей школы. Автор использовал в своем сочинении как труды, основанные на традиционной системе астрономии Птолемея и Феона, так и переведенные сочинения персидских астрономов, подчеркивая приоритет греков, ибо восточная астрономия вышла из птолемеевской системы.
Астрономией занимался Исаак Аргир, ученик Никифора Григоры. Иоанн Хортасмен, начинавший как простой писец, перешел к комментированию астрономических сочинений. Исидор, митрополит киевский (позже кардинал римской церкви), редактировал сочинение Абу Машара, известного астронома IX века, и был обладателем многих астрономических сочинений, часть из которых переписывал сам. Были и многочисленные читатели этих сочинений: их анонимные примечания, исправления, пометы, оставленные на полях кодексов, свидетельствуют не только об интересе к предмету, но и о понимании его.
Астрономия, как и математика, иллюстрирует восприимчивость византийцев к научным достижениям других народов – черта, весьма примечательная для палеологовского времени. Наряду с персидскими в тот период распространяются переводы еврейских астрономических трудов: таблицами Иммануила Бонфиса из Тараскона пользовались Георгий Хрисококк и Матфей Камариот, таблицами Якова бен Давида – Марк Евгеник.
В целом можно сказать, что византийцы были не хуже и не лучше остальных людей планеты, а в науках шли впереди многих. Но историки продолжают твердить, что Византия – страна эпигонов, неспособных на выдвижение самостоятельных мыслей. Например, С. Н. Гукова в сборнике «Культура Византии», явно находясь в плену стандартных представлений, сообщает:
«Однако в астрономических исследованиях византийцы проявили, вероятно, не больше оригинальности, чем в математике. Занимаясь главным образом компиляцией и комментированием, они не вышли за границы, очерченные авторитетом Птолемея, хотя Григора, как и Варлаам, делали поправки к его расчетам».
Интересно, а что же они должны были сделать? Состояние техники не давало возможности получать новые данные, способные радикально изменить ситуацию в астрономии того времени. Уже достаточно того, что они дали миру труды Птолемея, которые формировались достаточно долго и были переданы другим народам.
Историки, конечно, находят психологические объяснения найденной ими же самими «консервативности мышления» византийцев. Одну из причин А. Тион видит в национальной гордости: «Византийцы сознавали себя обладателями знаний греческой древности, и Птолемей был их астрономом – ничто не могло с ним сравниться, и им нечему было учиться у варваров».
Однако известно о широком распространении в Византии переводов научных сочинений, что свидетельствует: византийцы не пренебрегали чужеземной мудростью и сами думать умели.
Арабская астрономия
Аль-Мамун (813–832), второй сын Харун-Ар-Рашида, получил свое образование у христианского врача Мезуа и не только был любителем просвещения, но и деятельным ученым, по крайней мере в астрономии. Он основал школы и библиотеки во всех значительных городах своего государства и, чтобы открыть к ним свободный доступ грекоязычной науке, поставил одним из главных условий мира с побежденным византийским императором Михаилом III выдачу значительного числа греческих сочинений. Он распорядился перевести Птолемея с греческого на арабский язык. Он собрал в Багдаде ученых всех верований и великолепно содержал их.
По его желанию арабы предприняли новое градусное измерение. Две партии ученых измерили в Тадморской равнине (Месопотамия) градус меридиана, одни к югу, другие к северу (вероятно числом шагов). Обе партии определили пройденное ими расстояние в 57 арабских миль. Халиф послал затем других астрономов в пустыню Синджар для определения еще одного градуса. Они определили его в 56 1/4 мили, вследствие чего приблизительная величина была выведена в 56 2/3 арабских миль. Сравнительно с первым градусным измерением Эратосфена ошибка уменьшилась.
Величайшим астрономом арабов был арабский принц Аль-Баттани (850–929), известный у латинских переводчиков как Albategnius. Он родился в Баттане, в Месопотамии, и был в Антиохии наместником халифа. Науками занимался с успехом, но после него осталось только одно сочинение о небесных явлениях, да и то дошло до нас в переводе такого человека, который, говорят, не знал ни латинского языка, ни астрономии.
Что касается практической астрономии, говорят, что Аль-Баттани наблюдал четыре затмения. Наклонение эклиптики к экватору нашел равным 23°35 41". Определял время равноденствий и год вывел в 365 дней 5 часов 24 секунды, то есть на 2 минуты 26 секунд короче года своих предшественников: этот вывод есть настоящее открытие, потому что он показал перемещение солнечного перигелия. О таком перемещении не думал ни один астроном, и оттого имя Аль-Баттани осталось потомкам. Он точнее определил эксцентриситет солнечного пути и открыл, что место земного приближения к солнцу перемещается.
Будучи замечательным наблюдателем, он во многих отношениях исправил Птолемея. Так, им было замечено, что предварение равноденствий достигает одного градуса в 66 лет (в действительности – в 72 года), а не в 100 лет, как утверждал Птолемей. Уверяют, что Аль-Баттани находил теорию Птолемея для объяснения сложного лунного движения неудовлетворительной, что не заставило его, однако, отречься от «Альмагеста». В настоящее время трудно решить, недоставало ли у него смелости отступить от этой системы вследствие чрезмерного преклонения перед ее творцом, или же при всей способности к наблюдению он не мог предложить свою конструкцию строения мира.
Абу Наср Мансур ибн Али ибн Ирак, выдающийся ученый средневекового Востока, учитель и друг великого ал-Бируни, оставил 25 названий сочинений. Многие из них сохранились в подлинниках, о других можно судить по упоминаниям современников ибн Ирака или ученых более позднего периода.
Он родился в Хорезме, по-видимому, около 961–965 годов. Будучи представителем династии хорезмшахов Иракидов, ибн Ирак перенес много лишений после ее падения в 995 году, но биография его в подробностях неизвестна, даже дата его смерти точно не установлена. Различные источники позволяют предполагать, что он умер между 1034 и 1036 годами. Лишь в трактате ал-Бируни «Книга ключей науки астрономии о том, что происходит на поверхности сферы», написанном в 995–996 годах, дана яркая характеристика человеческих качеств ибн Ирака. Ссылаясь на давнее личное и близкое знакомство со своим учителем, ал-Бируни свидетельствует о его справедливости при решении научных споров, большой скромности, самобытном уме, обширных познаниях и великолепной памяти.
В возникшей дискуссии по поводу приоритета в открытии сферической теоремы синусов ал-Бируни решительно становится на сторону учителя. Он пишет, что знает ибн Ирака с тех пор, как начал заниматься математикой, учился по книгам из его библиотеки и по его трудам, с которыми знакомился в процессе работы автора над ними. Поэтому ему известно, что ибн Ирак никогда не присваивал чужих достижений. По своей скромности он всегда был склонен недооценивать себя в сравнении с другими учеными. Все это не позволяет ему даже допустить мысль о том, что ибн Ирак заимствовал доказательство теоремы синусов у других, выдав его за собственное. Он убежден, что ибн Ирак прав, говоря, что доказал это предложение давно, но обнародовал его только тогда, когда оно потребовалось ему по ходу рассуждения.
Сочинения ибн Ирака пользовались широкой популярностью не только у его современников. Они изучались и цитировались астрономами и математиками более позднего времени, в частности хорезмийским астрономом XII–XIII веков ал-Чагмини. Неоднократно цитирует ибн Ирака также Насир ад-Дин ат-Туси в своем знаменитом «Трактате о полном четырехстороннике».
Труды ибн Ирака посвящены главным образом астрономии. Его основное произведение «Шахский Алмагест» (ал-маджисти аш-шахи), написанное между 997 и 1017 годом и пользовавшееся большим авторитетом у средневековых восточных астрономов, сейчас считается утерянным. Этот труд известен только по цитатам из него, которые приводили ал-Бируни и Насир ад-Дин ат-Туси.
«Трактат о таблице минут» ибн Ирака содержит числовые таблицы для некоторых функций, комбинации которых позволяют получить решение конкретных задач сферической астрономии; в сочинении рассматривается 40 таких задач. Цель автора состояла в доказательстве преимущества, которое дает выбор радиуса основного круга R=1, а не R=60, как было принято со времен Птолемея.
В «Трактате о доказательстве к действию Мухаммада ибн ас-Саббаха» ибн Ирак рассматривает метод, с помощью которого астроном IX века Мухаммад ибн ас-Саббах определял наклонение эклиптики к небесному экватору, указывает его ошибку и разъясняет свой собственный метод решения этой задачи. Несколько астрономических сочинений ибн Ирака посвящено конструкции астролябии и работе с этим инструментом.
В математических трудах ибн Ирака трактуются вопросы, в большинстве своем возникшие в связи с решением задач сферической астрономии. Они относятся прежде всего к тригонометрии, в развитие которой ибн Ирак внес особенно значительный вклад. Наибольшую славу принесли ему комментарии к «Сферике» Менелая. Важно отметить, что греческие рукописи сочинения Менелая погибли, и Европа познакомилась с ним в XII веке благодаря латинскому переводу с арабской версии Х века.
Еще один крупный арабский ученый – Абу-л-Вафа-аль-Буждани (Мухаммед бен-Яхия бен-Исмаиль бен-Алаббас) родился в 939 году в городе Буджань в Хорасане. В двадцать лет переселился в Багдад и жил там до своей смерти в 998 году. Он писал объяснения на Евклида и Диофанта, сочинил трактат об арифметике, занимался астрономическими наблюдениями, исправил таблицы своих предшественников и составил оригинальный «Альмагест», первые главы которого содержат формулы тангенсов и секансов и таблицы тангенсов и котангенсов (он их и ввел) для всей четверти окружности. Абу-л-Вафа, употребляя их в своих тригонометрических вычислениях, упростил весьма сложные и неудобные формулы, потому что в них входили и синусы и косинусы искомых углов. Эти улучшения в тригонометрии несправедливо приписывают Региомонтану, а на самом деле уже за шестьсот лет до него ими пользовались арабы.
Абу-л-Вафа, сравнив свои наблюдения с выводами астронома Аль-Мамуна и с таблицами Птолемея, сделал в теории Луны важную поправку: он ясно показал третье неравенство ее движения, которое Тихо Браге позже назвал вариацией. Таким образом, Абу-л-Вафа опередил Тихо Браге.
После его смерти багдадская математическая школа начала приходить в упадок. Первенство перешло к Каиру, откуда образование распространилось по всей Западной Африке и по Испании.
Эбн-Юнис (Абуль-Гассан бен-Абдеррахман бен-Ахмед бен-Юнис Абдала бен-Муса бен-Мезара бен-Гафез бен-Гиан), родившийся в Египте в середине Х века, принадлежал к древнему роду, вышедшему из Йемена. Отец его, Абу Сайд Абдеррахман, написал историю Египта. Сам он получил блестящее воспитание и доказал, что можно быть в одно время музыкантом, поэтом и математиком.
Он разработал много практических приемов и правил, приближающих арабскую тригонометрию к новейшей употреблением тангенсов, начатым Абу-л-Вафой, и многими другими вспомогательными способами для облегчения вычислений, придуманными в Египте. Еще мы обязаны Эбн-Юнису гномоном со скважиной и важными поправками в греческих таблицах. По этим причинам книга его на всем Востоке заменила птолемеев «Альмагест». Лунно-солнечные таблицы Эбн-Юниса переписаны:
1) персиянами в таблицах Омер-Кейма, в которых показана истинная величина тропического года (1079);
2) греками в «Синтаксисе Хризококка»;
3) в «Таблицах Илханских» Нассир Эддина Тусси и
4) китайцами в астрономии K°-Чу-Кинга.
Таким образом, влияние ученой каирской школы распространилось к западу и возбудило деятельность ученых Магриба и Испании.
Эбн-Юнис умер в Каире в 1008 году.
Астрономия процветала у арабских народов и в Средней Азии вплоть до XV века. Многие крупнейшие ученые наряду с другими науками занимались уточнением астрономических постоянных геоцентрической теории.