Другая история науки. От Аристотеля до Ньютона — страница 5 из 32

Механические часы оказались самым сложным механизмом, созданным в Средние века. И так же, как во всех других случаях, появление и совершенствование этого механизма, с одной стороны, были вызваны потребностями общества, а с другой – сами инициировали развитие науки и общественный прогресс.

Надежные часы были нужны прежде всего церкви, для уточнения и унификации времени богослужения. Сначала с этой задачей более или менее успешно справлялись солнечные часы, со временем их заменили башенные с боем, – поэтому есть основания предполагать, что первые часовые механизмы не имели циферблата, а имели один только бой, обозначая звуком наступление определенного часа.

Но и в светских делах требовалось знать точное время! Показательно в этом смысле разрешение, которое королевский наместник в Артуа (Франция) дал в 1355 году жителям городка Эр-сюр-ля-Лис: он разрешил воздвигнуть городскую колокольню, чтобы ее колокола отбивали не церковные часы, а время коммерческих сделок и работы суконщиков. Время нужно было знать и в мануфактурах, в которых результат работы зависел от точного соблюдения продолжительности отдельных технологических процессов.

Но, скажем прямо, во всех перечисленных случаях можно было обойтись без механических часов. Хватило бы тех, что уже были: солнечных, песочных или водяных.

А вот развитие торговли без механических часов обойтись не могло, ведь значительное расширение морских торговых связей требовало более точных методов навигации. Когда морские суда плавали в Средиземном море или с севера на юг вдоль побережий, то определение широты, дополняемое исчислением по лагу, позволяло определять местонахождение морского судна с достаточной точностью. Широту местности определяли с помощью астрономии; но долготу с помощью астрономического расчета определить невозможно, необходимая для этого точность измерений была недостижимой даже в XVIII веке. И только имея часы, настроенные на время в некой известной точке Земли, можно было, сравнивая его со временем на судне, рассчитать долготу местности. А время на судне определяли по солнцу и звездам.

Производство часов, даже таких крупных и несовершенных, какими были первые образцы, требовало гораздо более высокой точности изготовления, чем все прежние машины. Говорят, что современное машиностроение есть детище, родившееся от «брака» тонкого мастерства часовщика с техникой тяжелого машиностроения, применявшейся строителями мельниц и других мощных двигателей.

Как же узнавали время до появления механических часов?

Солнечные часы

Несомненно, самым распространенным хронометрическим прибором были солнечные часы, основанные на кажущемся суточном, а иногда и годовом движении Солнца. Появились такие часы не раньше осознания человеком взаимосвязи между длиной и положением тени от тех или иных предметов и положением Солнца на небе. Но даже осознав это все, вряд ли кто-то сразу бросился строить часы; надо было еще понять, что такое время. Ведь и теперь еще бродят кое-где по Земле первобытные племена, прекрасно знающие, что такое тень, но обходящиеся тем не менее без часов. Нужды нет.

Известно, что в своем первоначальном виде такие часы имели форму обелиска, но точная дата их возникновения неизвестна. А кстати, их могли изобрести несколько раз в разных местах.

Традиционная история считает, что самым первым упомянул солнечные часы китаец Чиу-пи (около 1100 года до н. э.). В своей рукописи он сообщил, что с их помощью китайцы легко установили летнюю и зимнюю высоту Солнца и определили наклон эклиптики в 23°52 . Правда, неясно, как они это мерили, поскольку многие знания, необходимые для этого, в частности тригонометрия, появились значительно позже. Да и зачем они это сделали, тоже непонятно. Предположим, из-за врожденной китайской любознательности. Причем до недавнего времени китайцы считали свою страну Срединной империей, накрытой куполом неба, и никакого представления ни о шарообразности Земли, ни об эклиптике не имели.

Самые благоприятные климатические условия для измерения времени с помощью солнечных часов имеет Египет, поэтому более достоверным представляется мнение, что первые солнечные часы – гномон, вертикальный обелиск со шкалой, нанесенной на землю возле него, – появились именно здесь. Обелиски служили одновременно для почитания культа бога Солнца. Эти священные обелиски стояли, как правило, перед входами в храмы. Интересно, что традицию устанавливать солнечные часы у храмов можно проследить и в Европе вплоть до XIX века. А вот в России не всегда солнечно, поэтому у нас собирают верующих в храм боем колоколов.

До сих пор сохранился египетский обелиск высотой в 34 метра. Считается, что он в царствование Августа был перевезен из Египта в Рим и по указанию императора установлен на Марсовом поле, а руководил этой операцией математик Факундус Новус. Гномон поставили в центре специальной панели, на которой расчертили циферблат; часовые линии были выложены из бронзовых металлических частей. По словам Плиния Старшего, обелиск служил для определения времени года и долготы дня. Он простоял несколько веков, но в эпоху упадка Древнего Рима был сброшен и надолго забыт. В 1463 году его опять нашли, но только в 1792 году вновь установили на площади Монтечиторио в Риме, где он стоит и поныне.

В Египте помимо обелисков были созданы и другие конструкции солнечных часов. Например, состоящие из горизонтальной части – линейки с хронометрической шкалой длиной около 30 см, и перпендикулярного ей «плеча», отбрасывающего тень на шкалу. Еще тут были ступенчатые часы с двумя наклонными поверхностями, ориентированными по оси восток-запад и разделенными на ступени. При восходе Солнца тень падала на край верхней ступеньки одной из этих поверхностей, восточной, затем постепенно опускалась, а к полудню исчезала. После полудня тень снова появлялась в нижней части западной поверхности, откуда она поднималась до тех пор, пока при заходе Солнца не касалась грани верхней ступеньки. У таких часов время определялось длиной, а не направлением тени.

Измерение времени длиной тени кое-где сохранилось до позднего Средневековья. Врач и географ Паоло Тосканелли построил в 1468–1482 годах на костеле св. Марии де Фиоре во Флоренции гномон высотой 84,5 метра, с помощью которого удавалось измерять с полусекундной точностью местный полдень. С помощью этого гномона Тосканелли уточнил данные астрономических таблиц.

Были другие солнечные часы, со шкалой для определения времени по направлению отбрасываемой тени, хоть и появились они, наверное, позже. Для правильного показания времени верхняя линия шкалы была горизонтальной, и шкала составляла прямой угол с плоскостью местного меридиана. Поскольку компас еще не был известен, для правильной установки часов приходилось вести наблюдения за моментами солнцестояний или равноденствиями.

На древних солнечных часах деления наносили, исходя из практического опыта, потом – на основе теоретического расчета, правда неверного. Египтяне знали, что тень, отбрасываемая гномоном, различна в зависимости от времени года, но разница не учитывалась. Абсолютно точное время здешние гномоны показывали лишь дважды в год: в дни весеннего и осеннего равноденствия. Поэтому позже, чтобы улучшить результат, стали строить солнечные часы с особыми шкалами для разных месяцев.

При кажущейся простоте в ходе разработки теоретических основ науки о часах, гномоники, возникали и решались математические задачи о трисекции угла, о конических сечениях, о стереографической проекции и т. д. Решение этих задач на мусульманском Востоке привело к обоснованию и применению в практике формул прямолинейной и сферической тригонометрии. Создание солнечных, водяных, песочных часов способствовало развитию точной механики, а она, в свою очередь, была связующим звеном между приборостроением и опытной наукой.

Из Египта знания о солнечных часах стали распространяться по всему миру. И здесь можно привести два соображения: хронологическое и общеисторическое.

Во-первых, тот факт, что теоретическое обоснование для солнечных часов делали в мусульманских странах, говорит нам, что эта история происходила позже как минимум VII века, ибо раньше не было еще не только мусульманских стран, но и вообще мусульман.

Во-вторых, подобные научно-технические разработки могут вести только народы, имеющие для этого и подготовленных людей, и средства, и потребность в измерении времени. Достоверная история Византийской империи и отдельных ее территорий, в отличие от мифической истории Древнего Китая, показывает, что процесс научно-технического развития, при всех его зигзагах и завихрениях, имеет эволюционный и международный характер.

Византия среди всех стран достигла высокого уровня развития техники. Арабы учились у византийцев многому, в том числе и конструированию и изготовлению различных видов солнечных часов.

А в самой Византии были весьма распространены настенные вертикальные солнечные часы. Они имелись на стенах церквей и общественных зданий и были примерно такого же типа, как на стенах Башни ветров в Афинах и на стене византийской церкви, построенной на месте языческого храма Грация. На циферблате для обозначения часов впервые появляются числа.

Свидетельства о наличии в Константинополе часов как прибора времени историки находят в документах, отнесенных ими к VI веку, но, к сожалению, без какого-либо пояснения их устройства. На основании эпиграммы, относящейся ко времени царствования Юстина II (565–578), византиевед Рейске заключает, что уже в VI веке у византийских греков были часы с боем, по крайней мере, большие городские. Датировка такого сообщения требует дополнительной проверки и больших размышлений.

В «Уставе» Константина Багрянородного (911–959) упоминается профессия часовщика. Здесь же говорится о наличии в империи специальных людей, отбивавших часы церковных служб и молитв. Предполагается, что во дворце отбивание часов необходимо было не столько для молитв и церковных собраний, сколько для обозначения времени собраний воинов, открытия и закрытия дворца, смены стражи и других действий, совершающихся регулярно.

Однако учтем, что при господстве аграрного строя и ремесленной техники (будь то в Древнем мире или в Средние века) не было нужды делить время на мелкие отрезки и точно их измерять, как теперь. Люди определяли время по естественному движению Солнца, по длинным летним дням и коротким зимним, которые одинаково делили на 12 часов, а потому летние и зимние часы были разными.

Подчеркнем это особо: под влиянием изменяющегося наклона Солнца изменялась в течение года длина дневных и ночных часов. Согласовывать час, который показывают приборы с равномерной шкалой (водяные, огневые, песочные и механические часы) с длительностью часа солнечных часов – труднейшая проблема.

Более поздние солнечные часы получили криволинейные шкалы, что устранило этот недостаток. Такими часами со сложными шкалами, рассчитанными для квартальных или месячных интервалов, пользовались примерно до XV века. Также до конца XIV века в Центральной Европе были весьма распространены настенные вертикальные солнечные часы с горизонтальной теневой штангой, перенятой первоначально из Египта. Но в Египте, благодаря сравнительно малой удаленности от экватора, время определялось с приемлемой степенью точности, тогда как в Греции, Италии или Чехии эта точность была значительно хуже.

Новую эпоху в развитии солнечного часостроения открыло важное изобретение, сделанное в 1431 году. Принцип его заключался в установке теневой стрелки в направлении земной оси; такую стрелку назвали полуосью. Этим простым нововведением было достигнуто то, что теперь тень равномерно вращалась вокруг полуоси, поворачиваясь каждый час на 15°.

Разновидность экваториальных часов – аналемматические солнечные часы, стрелка которых направлена перпендикулярно плоскости часовой шкалы, но эта шкала лежит не в плоскости, параллельной экватору, а в горизонтальной плоскости, например непосредственно на земле.

Если бы нам понадобилось измерять этими часами время, то надо было бы вынести часовую шкалу на эллиптическую кривую и при этом одновременно изменять положение стрелки в меридиональной плоскости применительно к сезону года. Описание таких часов появилось в астрономических трудах XVI века, но детальными измерениями с помощью этих часов стал заниматься лишь в середине XVIII века астроном и директор Парижской обсерватории Джозеф Джером Лаланд.


Стало возможным ввести равномерное время для всего года, причем отрезки, соответствующие часам, были одинаковой длины независимо от изменяющейся высоты Солнца. Одним из первых упоминаний о часах с полуосью является рукопись Теодорика Руффи от 1447 года. Некоторые солнечные часы того времени имели одновременно гномон и полуось; они описаны в рукописи арабского астронома XV века Сибт-аль-Маридини; аналогичные часы построил примерно в то же время египетский астроном Ибн-аль-Магди.

Прогресс, которым ознаменовалась наука в эпоху Возрождения, отразился и на конструкции солнечных часов. Сравнительно быстро, примерно за 130 лет, прежние несовершенные часы превратились в весьма точные для своего времени хронометрические приборы, которыми можно было измерять время в любом месте Земного шара. Для правильной установки часов стали использовать компас.

Один из первых создателей солнечных часов с корректирующим компасом – астроном и математик Региомонтан, настоящее имя которого Йоганнес Мюллер (1436–1476), известный также как Жоан де Монте Регио, работавший в середине XV века в Нюрнберге. Он был также автором первого специального труда о солнечных часах.

Сочетание солнечных часов с компасом привело к тому, что их стало возможным использовать повсеместно, и появились портативные, карманные или дорожные модели часов. Солнечные часы в виде полого полушария со стрелкой, отбрасывающей тень на внутреннюю полость, начали строить с 1445 года, хотя официальная история науки и относит их изобретение к античности.

Солнечные портативные часы

Интересны кольцевые солнечные часы, один из вариантов дорожных, – они одновременно служили и в качестве декоративной подвески. Главной их частью было латунное кольцо диаметром в несколько сантиметров, сопряженное с другим подвижным кольцом, снабженным отверстием для солнечного луча. На внешней поверхности главного кольца гравировали начальные буквы месяцев, а против них, на внутренней поверхности, находилась часовая шкала. Перед измерением надо было повернуть меньшее колечко так, чтобы отверстие для луча лежало у наименования нужного месяца. Для измерения времени часы выставляли так, чтобы солнечный луч проходил через отверстие и указывал час на шкале.

Первое описание таких часов, в виде перстня с печатью, содержится в книге врача Боне, изданной в Париже в 1500 году.

Одной из самых популярных разновидностей дорожных солнечных часов были так называемые пластинчатые часы. Первые экземпляры появились в Европе в 1451–1463 годах. Обычно они состояли из двух, а иногда из трех одинаковых по величине четырехгранных прямоугольных пластинок, соединенных подвесками, причем в нижней пластинке обязательно должен был находиться компас.

Имеется описание деревянных восьмигранных палок с металлическим острием длиной 160 см и с вырезанными часовыми шкалами. Это – дорожные солнечные часы (ашадах), которыми пользовались в Средние века индийские паломники. В ручке такой палки просверливали обычно четыре сквозные отверстия, в которые над шкалой для соответствующего месяца вдвигался стержень длиной около 15 см так, чтобы его острие при вертикальном положении палки отбрасывало тень на шкалу. На палке должно было быть 12 шкал. Поскольку для дней, удаленных от солнцестояния на одинаковое время, действовали одинаковые условия, то достаточно было иметь 8 шкал. Наименование ашадах эти часы получили по тому сезону (июнь – июль), в котором совершались паломничества.

Солнечные часы-посох для паломников

С начала XVI века теорию солнечных часов начали преподавать в университетах Виттенберга, Тюбингена, Ингольдштадта, в Праге и в Штирском Градце как составную часть математики.

Примерно в это же время появились оконные солнечные часы. Они были вертикальными, их циферблатом была поверхность окна храма или ратуши. Циферблат обычно состоял из мозаичной филенки, залитой свинцом. Стрелка отбрасывала тень на циферблат, устроенный так, чтобы конец тени указывал не только часы, но и положение Солнца в зодиаке. Прозрачная шкала позволяла наблюдать время, не выходя из здания.

Были и зеркальные солнечные часы, которые отражали солнечный луч зеркалом на циферблат, расположенный на стене дома. Первым такие часы описал Й. Б. Бенедиктус в книге, изданной в Турине в 1574 году. По некоторым сведениям, конструированием зеркальных часов занимался будто бы и Николай Коперник, чему можно поверить, ибо до сих пор сохранился циферблат зеркальных часов на замке в Ольштыне предположительно его работы.

С точностью солнечных часов не могли сравниться механические до того, как в них стали применять маятниковый осциллятор. Но и после его появления солнечные часы сохраняли свою популярность. Наибольшего расцвета их производство достигло в XVI и XVII веках; их созданием занимались передовые европейские математики и астрономы. К тому же они очень долго оставались обязательной принадлежностью всех обсерваторий. Еще и в XVIII веке их строили в астрономических обсерваториях стран Востока, например в Индии. Яи Синг II, князь Джайпура, основав в 1708–1710 годах большую обсерваторию в Дилли, поставил там гномон высотой 18 метров. Вскоре после этого он приказал построить подобные часы в Бенаресе, Муттрже, Уйгаине и в Джайпуре.

Но люди изыскивали и примитивные способы измерения времени с помощью Солнца; иногда единственным пособием для этого была человеческая рука. Первые сообщения о таких «часах» относятся к началу XVI века. Левую руку поворачивали ладонью вверх и ее направленный вверх большой палец выполнял роль теневой стрелки. В зависимости от длины этой тени в сравнении с остальными пальцами руки можно было примерно определить время. Этот простой способ измерения времени во Франции, Южной Германии и некоторых других местах был хорошо известен даже в XIX веке.

Определение времени по положению звезд

Как уже сказано, в дальних морских плаваниях определение времени было очень важным делом; без этого нельзя понять, где находится судно. Водяные или песочные часы надо постоянно корректировать, но как? При помощи солнечных часов, какого бы совершенства они ни достигли, делать это в условиях качки и постоянных разворотов невозможно.

Оставалось использовать для определения времени «естественные часы» – звездное небо. Можно предположить, что очень долго это делали «вручную» люди, обладающие громадным опытом. Но развитие мореплавания шло быстро, требовались приборы. А поскольку первыми реальными мореходами были не мифические аргонавты, а моряки-византийцы и арабы, совершавшие плавания по Красному и Аравийскому морям в Индию, естественно, что их ученые и занялись этим вопросом.

Важнейший прибор, созданный ими, – астролябия. Этот угломерный прибор служил до XVIII века для определения широт и долгот в астрономии, а также горизонтальных углов при землемерных работах. До наших дней дошел трактат об астролябии, написанный византийским ученым Филопоном (он же Иоанн Грамматик) в 625 году. Примерно в это же время трактат на ту же тему написал сириец Себохта, а Сирия входила в состав Византийской империи. Первым из мусульманских ученых составил трактат по астролябии перс Ал Фазар (умер ок. 777 года).

Между тем изобрел астролябию, как полагают, древний грек, астроном Гиппарх в 150 году до н. э., то есть за 775 лет до того, как Филопон взялся писать об этом приборе первый известный нам трактат. Вообще Гиппарху (якобы ок. 180 или 190–125 до н. э.), чьё имя означает Конный Начальник, приписывают изобретения, которые могли быть реализованы лишь в VI–VII, а в некоторых случаях даже в XV веках. Например, он определял долготы, наблюдая одно и то же лунное или солнечное затмение из разных по долготе мест. Для этого ему надо было бы иметь представление о сквозном времени, то есть использовать механические часы, синхронизированные для всех наблюдателей.

По «линиям веков» синусоиды А. М. Жабинского время его жизни совпадает с XVI веком. Мы по этому поводу можем сказать лишь одно: именно в XVI веке средневековые ученые, используя нумерологические приемы, рассчитывали хронологию человеческой истории. По их версии некий Гиппарх оказался астрономом II века до н. э. Кто, когда и по какой причине приписал именно ему многие изобретения Средних веков и эпохи Возрождения, теперь сказать нельзя, равно как и назвать имя истинного изобретателя астролябии.

Такие же точно соображения можно привести по поводу многих так называемых древнегреческих ученых. Это византийцы VI–XII веков, действительные изобретатели многих полезных вещей, чьи прозвища мифологизировались, а даты жизни много позже были сильно удревлены. Вдобавок «сочинители» истории приписали этим ученым открытия более позднего времени.

Судите сами: Птолемей Клавдий (ок. 90 – ок. 160 н. э.) знал о Восточной Африке до 16,5 градуса ю. ш., об Индокитае и Восточном Китае, о Британских островах и Балтийском море. И это за полтора тысячелетия до широкого мореплавания, до появления компаса, корабельного руля и механических часов!

Так вот, Птолемей тоже изобрел медную астролябию, а пользоваться ею стали почему-то лишь с XVI века. А нам интересно, что по синусоиде А. М. Жабинского и Гиппарх и Птолемей, разделенные тремя веками, оказались все же на одной «линии веков» № 8, соответствующей XVI веку реальной истории, и оба изобрели разновидности астролябии такого высокого технического уровня, который был доступен как раз в этом веке. Поэтому затвердим раз и навсегда: упоминаемые в традиционной истории Гиппарх и Птолемей – литературные персонажи, и если даже астролябию изобрели люди с такими прозвищами, то были они византийцами, жили не ранее V века, а их изобретение не могло быть столь совершенным, как то утверждается историками.

Кстати, вспомним Герона Александрийского, увлечение которого механикой не привело ни к чему, кроме создания игрушек.

В отличие от мифической древнегреческой истории, в Византии развитие военной техники и реальное создание астролябии и часов способствовали совершенствованию механического искусства. Показателен здесь пример выдающегося византийского ученого Льва Философа (IX век). Его исследования касались главным образом математики, практической механики и прикладного естествознания. Он тоже увлекался игрушками, используя механику, в частности для устройства весьма сложных автоматически действующих фигур и подъемных механизмов для императорского дворца. Но ведь в это время создавалась и серьезная техника!..

До появления астролябии были уже приборы для фиксирования положения звезд при наблюдениях, это – визировальная доска и отвес. Работу выполняли два человека. Наблюдатель садился лицом к северу и держал перед собой дощечку и отвес; напротив него садился его помощник, который также держал отвес. Воображаемая линия от глаза наблюдателя к Полярной звезде должна была проходить через расщеп визировальной дощечки и оба отвеса. Время прохождения звезды через плоскость, определяемую этой воображаемой линией и отвесами, было моментом прохождения ею меридиана местности, на основании чего и составлялись звездные карты, образцы которых нам известны.

Инструменты для наблюдения прохождения звезд по меридиану (а) и порядок их использования для этой цели (б)

Затем появилась астролябия, и на протяжении столетий она была самым распространенным астрономическим прибором; ею пользовались на суше и на море. По замеренному с ее помощью положению звезды можно определить время. Арабы с помощью астролябии определяли время с погрешностью лишь в 1–2 минуты. Измерение времени методом определения высоты звезд применялось до середины XVII века многими астрономами, в том числе и Тихо Браге, который достиг точности измерения до нескольких секунд.

В Средние века бронзовые астролябии, имевшие основание в виде круглой плиты, разделенной на 360°, обычно вкладывали в пакеты с астрономическими таблицами или картами земной поверхности, составленными для различных географических широт. Астролябию дополняла звездная карта со знаками зодиака.

Самый старый и наиболее долго употреблявшийся звездный каталог называют каталогом Гиппарха: в нем имелись данные о движении 1022 звезд, а средняя погрешность достигала четырех минут. Западноевропейцы долгое время пользовались так называемыми Толедскими таблицами Альфонса, названными так по имени испанского короля Альфонса X, который поручил составить их в 1252 году. Прусские планетарные таблицы, изданные в 1551 году Эразмом Рейнгольдом, были созданы ради уточнения данных этих таблиц. Однако наибольшей точности достиг в своем звездном каталоге Тихо Браге; в нем упоминалось лишь 997 звезд, но средняя погрешность не превышала одной дуговой минуты.

В первой половине XVI века распространилось в Европе строительство армиллярных сфер, состоящих из системы кругов. Эти круги изображали экватор, меридианы, тропики, высотные круги и эклиптику со знаками зодиака, мировой оси, траекторий и положений Солнца и Луны и т. п. Как правило, армиллярные сферы имели лунные календари и схему расположения планет и служили для демонстрации положений созвездий и планет в определенный момент времени в различных координатных системах. Существовали и наблюдательные армиллярные сферы, предназначенные для измерения, однако они были весьма редкими, и сохранилось их очень мало. Эти приборы так и не заменили астролябию; считается, что единственным изготовителем их был Тихо Браге.

Наука о часах и развитие математики

С астрономии и науки о часах – гномоники, начинается история науки вообще, а в частности развитие теории астрономических инструментов. Изучая движение солнечной тени, отбрасываемой гномоном, греки Византии и Египта заложили начала тригонометрии; затем ее тщательно разрабатывали индусы, а потом арабы.

Гиппарх, византийский грек, как мы показали, ввел только одну тригонометрическую величину: хорду дуги и дал в качестве тригонометрического пособия таблицу хорд. Она содержала величины хорд, соответствующие углам в круге в частях радиуса, но их было трудно вычислять. Исходными для Гиппарха были хорды в 120, 90, 42, 60 и 36°. Затем Птолемей с большой точностью определил хорды всех углов, последовательно возрастающих на полградуса.

Если византийцы за меру угла принимали хорду, то в средневековой Индии стали прибегать к другим тригонометрическим величинам. Созидательная работа индусов в области гномоники приходится на период до XII века. Индийские математики впервые ввели в употребление половину хорды – синус. Кроме линий синуса, они пользовались линией косинуса и линией синуса-верзуса, что есть разность между радиусом и линией косинуса.

В трактате «Сурья-сиддханта», как и в других «сиддхантах», гномон и его тень фигурируют во многих тригонометрических задачах. Постепенно были сформулированы правила гномоники для определения теней по высоте Солнца и обратное правило – определение высоты Солнца по тени гномона и т. д.; увеличивалось количество введенных в рассмотрение зависимостей между тригонометрическими величинами. Это было актуально для нахождения высоты и азимута Солнца, в зависимости от которых в течение каждого дня определялось время и изменения соответствия между ночными и дневными часами. Именно для нахождения по тем или иным данным высоты Солнца, продолжительности дня и ночи перечислялась последовательность арифметических действий над синусами, синусами-верзусами и радиусом.

В трактате «Сурья-сиддханта» можно найти, хотя и в словесном выражении, теорему косинусов сферической тригонометрии, использованную для определения высоты Солнца.

В VIII–XI веках индийская тригонометрия попадает к арабам.

В 772 году в Багдад ко двору халифа аль-Мансура прибыл один индийский астроном и принес с собой астрономические таблицы. Эти таблицы, содержавшие важную индийскую таблицу синусов, были вскоре по приказанию халифа переведены на арабский язык и приобрели среди здешних ученых большую популярность под названием «сиддхант». Ученые стран ислама, заменив хорды Птолемея синусами и опираясь на вычислительные приемы «Альмагеста» и правила индийской гномоники, ввели в математику остальные тригонометрические функции (тангенс, котангенс, секанс и косеканс).

В это время перенятое у византийцев искусство изготовления угломерных инструментов, различных видов водяных и солнечных часов и других приборов было доведено мусульманскими учеными и мастерами до большого совершенства. Так благодаря применению тригонометрии к решению задач гномоники она из искусства превратилась в подлинную науку.

В Европе интерес к науке гномонике был вызван переходом в конце XIV века на новый счет времени, основанный на равных ночных и дневных часах. Возникла потребность приспособить устройство солнечных часов к этому счету времени. Развитию науки в этом направлении способствовал перевод на латинский язык руководства по гномонике Абу-Али ал Хасана. Последний был пионером в разработке теории и практики создания солнечных часов, ориентированных на измерение равных часов. Работы этого арабского ученого XIII века были хорошо известны в Западной Европе.

Водяные часы

Солнечные часы были простым и надежным указателем времени, но страдали некоторыми серьезными недостатками: их работа зависела от погоды и была ограничена временем между восходом и заходом Солнца. Нет сомнений, что из-за этого ученые стали изыскивать иные пути измерения времени, не связанные с наблюдением небесных тел. Также понятно, что новые приборы измерения времени должны были принципиально отличаться от солнечных часов.

Единица времени для солнечных часов выводилась из вращения Земли и ее движения вокруг Солнца; для звездных – из видимого движения звезд. Новые хронометрические приборы (жидкостные, песочные, воздушные, огневые и др.) имели искусственный эталон единицы времени в виде его интервала, необходимого для вытекания, втекания или сгорания определенного количества вещества.

Подобно солнечным часам, эта группа простейших часов прошла долгий путь развития, сопровождавшийся открытием интересных принципов действия и конструктивных элементов. Ведь измерение времени с помощью часов «втечения» или «истечения» было довольно трудным делом: они должны были иметь много шкал или специальных устройств для регулирования поступления или истечения воды. Некоторые из них, например зубчатые передачи, ролики, цепные подвески и гири, нашли применение в последующей эре хронометрии – эре механических часов.

Водяные часы заняли после солнечных второе место по количеству и были самыми важными в этой группе простейших часов.

В литературе часто говорится о них, как о «клепсидрах». Это наименование происходит от сочетания двух греческих слов klepto – брать и udor – вода. Многие, судя по греческому наименованию, ошибочно считают, что именно в Греции они были придуманы. Однако дело обстоит не так: в примитивном виде водяные часы были известны уже египтянам, у которых сохранились, по всей вероятности, самые старые водяные часы в мире. Они были обнаружены в 1940 году в храме Аммона в восточных Фебах, а сейчас хранятся в музее Каира. На внутренней поверхности их алебастрового корпуса наколами обозначено 12 часовых шкал для измерения времени в соответствующих месяцах. Помните, что солнечные часы дают разную длительность часов в разные месяцы? Это и было учтено в египетских водяных часах. Сосуд заполняли до самого верха водой, которая затем вытекала через небольшое придонное отверстие.

Однако есть и загадка. Дело в том, что самой существенной проблемой при создании таких часов была отработка такой формы сосуда, которая обеспечивала бы истечение воды с равномерным понижением уровня. Так вот, упомянутые египетские часы уже давали достаточную равномерность понижения уровня, хоть и с некоторой ошибкой. Это наводит на мысль, что они хоть и древнейшие из известных, но все же не первые.

В античной Греции водяные часы применяли для регламентации времени, предоставляемого ораторам во время судебных процессов. Эти часы были, по существу, большими амфорами, внутренняя поверхность которых имела форму, образованную вращением параболы или эллипсоида, что опять показывает их позднее происхождение: ведь установить зависимость скорости истечения от высоты столба воды и формы сосуда смогли только в Средние века.

Амфора высотой около 1 метра и шириной несколько более 40 сантиметров вмещала около 100 литров воды. При диаметре отверстия истечения в 1,4 мм требовалось почти 10 часов на полное опорожнение сосуда. В воде находился поплавок с прикрепленным к нему длинным стержнем, выступавшим над краем сосуда. На стержне была выгравирована шкала. Время, истекшее после начала истечения воды, указывалось на этой шкале. Поплавок опускался в амфоре равномерно, поскольку уменьшение скорости истечения компенсировалось уменьшающимся внутренним диаметром сосуда.

То, что клепсидра не зависела от света Солнца, сделало из водяных часов прибор, пригодный для непрерывного измерения времени и днем и ночью. К тому же стало возможным развивать некоторые механические элементы. Началось соревнование конструкторов в изобретении остроумных гидравлико-пневматических механизмов: для звуковой сигнализации о времени, для освещения часов ночью; такие элементы можно найти у целого ряда водяных часов арабского происхождения. В руках одаренных воображением мастеров возникли выдающиеся произведения, отличающиеся высокой художественной ценностью и оригинальной функциональностью.

Поистине легендарной фигурой среди мастеров по изготовлению клепсидр считается известный греческий механик Ктесибий Александрийский, живший то ли за 100, то ли за 150 лет до н. э. Римлянин Витрувий даже называет его изобретателем водяных часов.

Сохранились сообщения о двух изготовленных Ктесибием часах, которые ввиду своих особых достоинств заслуживают хотя бы краткого описания. В часах, приводимых в действие водяным колесом, Ктесибий использовал передачу сил и движения зубчатым механизмом, проект которого теоретически наметил еще Аристотель (якобы в IV веке до н. э.). Зубчатая передача соединяла ведущий механизм со шкалой, расположенной на цилиндрической поверхности поворотной колонны и разделенной вертикальными прямыми на четыре основных поля. Система из 24 наклонных линий образовывала, собственно говоря, часовую шкалу для измерения планетных часов. Колонна со шкалой, приводимая в движение водяным колесом, вращаясь вокруг своей оси, совершала один оборот в год. Поэтому и камеры водяного колеса в нижней части часов заполнялись водой медленно, причем вода подавалась в небольшом количестве по особому трубопроводу. Статуэтка со стрелкой двигалась с помощью специального поплавкового механизма, управляемого другой статуэткой, находящейся на другой стороне часов. Слезы – водяные капли, капающие из глаз статуэтки, накапливались в сборники-подставки, откуда через трубопровод текли в поплавковую камеру стрелочного механизма. Кроме того, эти часы имели еще специальное устройство, которое через определенные интервалы выбрасывало на чашку мелкие камешки; это было звуковой сигнализацией.

Вторые часы Ктесибия отличались от первых тем, что их стрелка в верхней части с циферблатом управлялась поплавком, подвешенным на цепи, навернутой вокруг вала стрелочного указателя. Лунный календарь с зодиаком в нижней части часов тоже приводился в движение водяным колесом, камеры которого были закреплены непосредственно на задней стороне зодиаковой плиты.

По синусоиде А. М. Жабинского время этих изобретений приходится на линию № 8, реальный XVI век. И в самом деле, такие часы были сделаны и описаны в сочинении «De solaribus horologies», изданном в Париже в 1560 году.

К произведениям высшего художественного творчества бесспорно относятся бронзовые водяные часы, изготовленные в период 799–807 годов, которые Гарун-аль-Рашид послал в подарок Карлу Великому. Эти часы с богатыми орнаментальными украшениями имели циферблат и каждый час провозглашали звуковым ударом металлического шара, который выскакивал из часов на декоративную решетку, а в полдень в часах открывались ворота и из них выезжали рыцари. Подобная техника автоматически движущихся фигур была развита в Европе много позднее – в период готики, со второй половины XII века. А кстати, рыцари, как сословие, со всеми присущими им атрибутами, появились не раньше XI века.

Китайские астрономические водяные башенные часы действующие вместе с армиллярной сферой и небесным глобусом

В Индии водяные часы назывались «яла-янтра». Это были преимущественно часы «истечения» с небольшим отверстием в дне. При восходе Солнца их заполняли водой, которая затем вытекала, так что до вечера процесс заполнения и истечения воды повторялся пять-шесть раз.

Считается, что около 725 года появились водяные часы в Китае, их сделал И-Хсинга. Верхом совершенства несомненно был проект больших пагодных астрономических водяных часов, разработанный в 1090 году и осуществленный Су-Сунгом в провинции Хонан, тогдашней столице китайской империи. Эти часы имели сигнальное устройство, похожее на то, которое имелось у водяных часов Ктесибия. Астрономическая же их часть имела форму армиллярной сферы и небесного глобуса. Многие считают, что принцип регулятора хода пагодных астрономических часов Су-Сунга стал соединительным звеном между водяными и механическими хронометрическими приборами. Но мы помним, какую дикость встретили в Китае первые иезуиты, придя туда. Так что все эти чудесные часы либо более позднего происхождения, либо выдумка.

Арабский инженер Аль-Язари написал в 1206 году книгу, в которой описал различные механизмы. В шести из десяти глав книги он описывает водяные часы с различными фигурными элементами, а в остальных главах знакомит читателей с некоторыми видами огневых свечных часов. Аль-Язари предпочитал фигурное изображение времени, в отличие от последующих конструкторов, которые перешли на цифровые индикаторы. Указательный механизм водяных часов Аль-Язари состоял из скульптурных изображений четырех павлинов: старый павлин, два молодых павлина и над ними пава. Эта фигурная часть дополнялась сверху 15 стеклянными шарами.

Как же работал механизм управления павлинами? Вода вытекает из бака в сосуд, закрепленный в подвеске так, чтобы после его наполнения он в определенный момент опрокинулся, причем его содержимое переливалось бы в нижнюю ванну и текло оттуда на лопасти водяного колеса. Водяное колесо приводит в движение передаточный механизм, соединенный с павлином, и он начинает свое движение. От воды действует и звуковой механизм флейт, и приводное устройство молодых павлинов. Водяное колесо отклоняет с помощью тяг павлинов от их первоначальных положений, а вода, вытекающая из ванны под водяным колесом в нижний бак, выжимает из него воздух на язычок флейт.

Это описание дает представление об остроумии авторов и сложности приборов, которые арабский мир знал намного раньше, чем подобные элементы появились в Европе.

Огневые часы

Помимо солнечных и водяных, с начала XIII века появились и первые огневые, или свечные часы. Это тонкие свечи длиной около метра с нанесенной по всей длине шкалой. Они сравнительно точно показывали время, а в ночные часы еще и освещали жилища церковных и светских сановников, в том числе таких правителей, какими были в середине XIII века Людовик Святой, а в XIV веке – Карл V. К боковым сторонам свечи иногда прикрепляли металлические штырьки, которые по мере выгорания и таяния воска падали, и их удар по металлической чашке подсвечника был своего рода звуковой сигнализацией времени.

В течение целых столетий также и растительное масло служило людям не только для питания, но и в качестве светильного материала, и как основа для масляных лампадных часов. Как правило, это бывали простые лампады с открытой фитильной горелкой и со стеклянной колбой для масла, снабженной часовой шкалой. Объем колбы подбирали так, чтобы ее содержимого хватило для непрерывного свечения между 6 часами вечера и 8 часами утра. Толщиной и длиной горящего фитиля регулировали величину пламени и расход масла так, чтобы понижение уровня масла в колбе соответствовало нанесенным на нее обозначениям времени.

Первоначальные цилиндрические или слегка выпуклые стеклянные сосудики под масло были источником некоторой погрешности в измерении времени. Дело в том, что вечером из-за более высокого уровня масла его давление вызывало более быстрое выгорание, чем ближе к утру. Поэтому лампадные часы более позднего происхождения имели стеклянную колбу в виде расширенной кверху груши, чтобы таким образом частично выровнять скорость сгорания масла и обеспечить точность определения времени.

Определить время появления таких часов сложно, однако можно сказать наверняка, что произошло это не раньше, чем научились производить в достаточном количестве стекло.

Больше всего лампадных часов было в Китае, который вообще считается колыбелью всех видов огневых часов. Помимо всякого рода лампадных часов тут в более позднее время появились газосветные часы, которые китайцы полюбили настолько, что некоторые их типы сохранялись вплоть до ХХ века. До сих пор в Китае рассказывают, что примерно 3000 лет назад Фо-хи, «отец Китая» и его первый император, создал первые огневые часы, чтобы с их помощью измерять дневное и ночное время.

Существовал и другой тип огневых часов, так называемые фитильные. Их главной частью был фитиль в виде длинной металлической палочки, покрытой слоем дегтя с деревянными опилками. Жар тлеющих опилок, подожженных на одном конце палочки, постепенно пережигал тонкие, поперечно натянутые волокна с подвешенными к ним шариками, которые падали в металлическую чашку. Иногда фитиль сворачивали в спираль, форма которой уже сама по себе заменяла часовую шкалу.

Наиболее типичные для Китая фитильные часы имели форму дракона, в хребте которого укреплялся специальный держатель для палочки. Скорость сгорания фитиля зависела от многих обстоятельств, и для определения ее требовался большой опыт. Такие часы никогда не относились к приборам, которые по точности можно было бы сравнить с солнечными или водяными часами. Причем наличие всех этих часов в Китае не дает никакой хронологической отметки, и во всяком случае не означает их древности.

Песочные часы

Дата возникновения первых песочных часов тоже неизвестна. Но и они, как и масляные лампадные, появились не раньше, чем прозрачное стекло. Считается, что в Западной Европе о песочных часах узнали лишь в конце Средневековья; одним из самых старых упоминаний о них является сообщение от 1339 года, обнаруженное в Париже. Оно содержит указание по приготовлению тонкого песка из просеянного порошка черного мрамора, прокипяченного в вине и высушенного на солнце.

Несмотря на то, что песочные часы появились в Европе столь поздно, они быстро распространились. Этому способствовали их простота, надежность, низкая цена и не в последнюю очередь возможность измерять с их помощью время в любой момент дня и ночи. Их недостатком был сравнительно короткий интервал времени, который можно было измерить, не переворачивая прибора. Обычные часы были рассчитаны на полчаса или час, реже – на 3 часа, и лишь в совершенно редких случаях строили огромные песочные часы на 12 часов хода. Не давало улучшения и соединение нескольких песочных часов в одно целое.

Как и огневые, песочные часы никогда не достигали точности солнечных. Кроме того, при длительном пользовании ими их точность изменялась, поскольку зерна песка постепенно дробились на более тонкие, а отверстие в середине диафрагмы, наоборот, постепенно истиралось и увеличивалось, так что скорость прохождения песка через них становилась большей.

Изобретение механических часов

Солнечные, водяные и огневые хронометрические приборы завершили первую фазу развития хронометрии и ее методов. Постепенно выработались более четкие представления о времени и стали изыскиваться более совершенные способы его измерения. Революционным изобретением, ознаменовавшим совершенно новые этапы развития в этом направлении, было создание первых колесных часов, с появления которых началась современная эра хронометрии.

Автор и дата изобретения механических часов неизвестны. Из некоторых сообщений Х века делаются предположения, что именно тогда впервые построил такой механизм монах Герберт из Ориллака, будущий римский папа Сильвестр II (950-1003). Действительно в технике он был большим талантом, к тому же имел возможность во время своих учебных поездок знакомиться с принципами построения различных арабских астрономических приборов и водяных часов. И все же вывод о создании Гербертом механических часов не имеет достаточных оснований, и вот почему.

Во-первых, арабы были весьма искусны в изготовлении водяных часов, и часы Герберта тоже могли быть водяными. Ведь содержащийся в документах термин «хорология» (horologium) относился тогда ко всякого рода приборам для измерения времени. Во-вторых, в дальнейшем не было упоминаний о достижении Герберта или о том, что его идею кто-либо развивал при его жизни или после нее.

Кстати, именно Герберт ввел в Европе «арабские» цифры.

Большинство историков видят преемственность: ведь и в самом деле механические часы стали результатом усложнения механической части водяных, в которых применялись уже циферблат, колесная передача, механизм боя, марионетки, разыгрывающие различные сцены… Разница была в движущей силе: в одном случае струя воды, в другом – тяжелая гиря. Недоставало только механического спускового устройства и регулятора хода.

Автор шпиндельного спуска («сторожка»), который через определенные промежутки времени прерывает движение часового механизма, неизвестен.

Примитивное спусковое устройство Вилларда де Оннекура: а) – общий вид: б) – спусковое устройство

Обычно историки ссылаются на механизм, чертеж которого приведен в альбоме французского архитектора Вилларда де Оннекура, как на первое упоминание спускового устройства для регулирования хода часов: он описал (приблизительно в 1250 году) грубое устройство, позволявшее фигурке ангела всегда показывать рукой на Солнце. Этот механизм, как полагают многие, не был изобретен Виллардом; скорее всего, он познакомился с ним и срисовал его во время своих путешествий. К тому же нарисованный в альбоме Вилларда механизм все-таки мало напоминает шпиндельный спуск.

Как видно из эскиза этого устройства, здесь в качестве движущей силы применена гиря, подвешенная на конце веревки, обмотанной вокруг оси колеса. Падение гири и относительно равномерное вращение вертикального стержня, на котором на подставке укреплена фигура ангела, регулировалось колебанием колеса взад и вперед. Период колебания обусловливался многими факторами, включая момент инерции, трение в опорах, силы, действующие на веревку.

С другим, несколько более поздним сообщением о механических часах встречаемся в «Божественной комедии» («Рай», песнь X) Данте Алигьери (1265–1321):

И как часы, которых бой знакомый

Нас будит в миг, как к утрене встает

Христа невеста звать нас в божьи домы,

Часы, где так устроен ход,

Что звук: динь-динь как звуки струн на лире.

В песне XXI «Рая» читаем:

И как в часах колеса с их прибором

Так движутся, что чуть ползет одно,

Другое же летит пред взором…

Но и в этих стихах речь может идти о сложных водяных часах, а не о механических.

Поэтому остается нам, оставив надежду на определение автора и точной даты, констатировать только одно: кто-то неизвестный и в неизвестное время – вероятно в конце XIII века, изобрел шпиндельный ход и сделал возможным появление механических часов. И этот ход оставался затем в употреблении в течение пяти с половиной веков. Самая же ранняя дата, которую можно достоверно назвать, говоря о применении шпиндельных механических часов, относится приблизительно к 1340 году или несколько позже (с точностью до нескольких лет). С тех пор они быстро вошли в общее употребление и стали предметом гордости городов и соборов. В 1450 году появились пружинные часы, а к концу XV столетия – переносные часы, но еще слишком крупные, чтобы их можно было назвать карманными или наручными.

Известны весьма старинные французские и английские башенные часы простого устройства с боем, но без циферблата. Английское слово clock – часы происходит от латинского clocca; другим его эквивалентом является саксонское clugge, французское cloche и древнегерманское (тевтонское) glocke, но первоначально все эти слова обозначали не часы, а колокол.

Производство железных башенных часов начинается с английских вестминстерских часов 1288 года. Следующее сообщение от 1292 года говорит о часах храма в Кентербери, далее есть сообщения о часах, построенных в 1300 году во Флоренции, на 14 лет позднее – в Каннах, в 40-х годах XIV века – в Модене, Падуе, о бельгийских часах в Брюгге и об английских часах в Дувре. В 1352 году были построены монументальные куранты в кафедральном соборе Страсбурга, четырьмя годами позже – башенные часы в Нюрнберге, в 1370 году такие же – в Париже, в 1381-м – первые подобные в Базеле, и, наконец, в 1410 году появились такие часы в Праге, ставшие основой позднейших пражских курантов.

Сохранились, конечно, и другие сообщения о строительстве часов, но они не вполне обоснованны. По одному из таких сообщений, башенные часы с боем изготовил Висконти в 1335 году для костела Беата Вирджинни (ныне Сен-Готард) в Милане. По другим данным, Генри де Вик из Поррэна изготовил около 1370 года башенные часы с боем для королевского дворца Карла V.

Результатом применения механических часов стал переход по всей Европе от церковных канонических часов, неравных по времени года, к равным часам нашей современной системы исчисления времени. Изменение было радикальным, а потому переход совершался постепенно, по мере распространения в городах башенных часов. Французский король Карл V первым сделал шаг к этой реформе. После установки дворцовых башенных часов де Вика он приказал всем церквам Парижа отбивать по ним часы и четверти часа. Так как на этих часах время отсчитывалось в равных промежутках, новый порядок исчисления времени распространился не только в Париже, но постепенно и в европейских странах.

Сутки сначала подразделяли на 24 часа, считая от одного заката Солнца до другого. Окончание дня отмечалось 24 ударами колокола, и такой порядок счета времени в некоторых местах сохранялся до 1370 года. Затем начался постепенный переход к подразделению суток на две равные половины, каждая по 12 часов, с отсчетом от полуночи до полудня и обратно – от полудня до полуночи. Теперь не стало надобности отбивать время двадцать четыре раза – хватало двенадцати раз. Переход на этот, более рациональный счет времени происходил в различных странах Западной Европы неодновременно; счет времени от 1 до 24 часов, начиная с часа восхода Солнца, дольше всего сохранялся в Италии и в некоторых городах Германии.

Часы одинаковой продолжительности называли «городским временем». Однако и при новом счете часы продолжали соразмерять и контролировать по истинному солнечному времени; это делали до появления маятниковых часов.

Помимо унификации длительности часа, вторым и долгосрочным результатом изобретения часов стал прогресс в механике. Очевидно, например, что зубчатые колеса столь широко распространились в технике во многом благодаря изобретению часов.

Самым старым документом о механических часах, содержащим описание и чертеж и опубликованным в 11 различных рукописях (из которых по крайней мере одна исходит непосредственно от автора часов), является, по всей видимости, сообщение об «астрарии» – астрономических часах, которые после 16 лет труда закончил в 1364 году профессор астрономии и медицины Джиованни де Донди для Палаццо дель Капитане в Падуе. Эти часы показывали движение Солнца, Луны и пяти планет, содержали в себе вечный календарь и давали возможность определять звездное и среднее солнечное время; они были известны далеко за пределами Италии, доставили Донди большую славу при жизни и обессмертили его имя.

У часов Джиованни Донди рама была изготовлена из бронзы, а валы, колеса, циферблат – из латуни. Из 297 частей этих часов 100 составляли колеса и шестерни, зубцы которых были нарезаны вручную. Зубцы были треугольной формы, но для различных астрономических зубчатых передач употреблялись тупые зубья – округленные, со срезанными краями. Для воспроизведения движения Луны нужно было иметь колесо со 157 зубцами, нарезка которых представляла задачу весьма трудную. Не менее трудной была нарезка на одном колесе 365 зубцов.

В 1529 году эти знаменитые часы испортились и остановились. После долгих поисков нашли часовщика, который сумел их восстановить, – это был Джуанелло Турриано (1500–1585). Современники провозгласили его гением, ведь он и сам сумел создать астрономические часы сложнейшей конструкции. Для их устройства потребовалось 1800 колес, с помощью которых воспроизводилось 30-дневное движение Сатурна, часы дня, годичное движение Солнца, движение Луны, а также всех планет в их «обычном движении» соответственно птолемеевой системе мироздания. По свидетельству современника, Джуанелло потратил двадцать лет только на предварительную разработку проекта своих часов.

Он же известен как строитель водопровода, который считался одним из величайших технических чудес XVI века.

Прогресс механических часов

В башенных часах впервые нашли применение сложные многоступенчатые колесные передачи (кинематические цепи с большими передаточными отношениями), а также кулачковые и храповые механизмы и муфты. В XIV–XVII веках более сложного технического объекта, чем башенные часы, не было. Они по количеству, разнообразию и точности механизмов, подлежащих монтажу, превосходили любые технические объекты того времени.

Часовое дело требовало знания важнейших кинематических соотношений, например числа оборотов колес и трибов (колесо с осью) при определенном количестве зубцов колес и трибов. Возникла необходимость в разработке кинематики механизмов. Зубчатыми передачами заинтересовался Леонардо да Винчи. Джеронимо Кардано (1501–1576), занимаясь часовыми механизмами, также уделял внимание кинематике зубчатого зацепления.

Весьма привлекательной частью башенных часов, кроме движения разнообразных по назначению стрелок, было наличие затейливых фигур, совершающих движение по определенной программе и весьма оживляющих часы. Затем, циферблаты часто располагались на всех четырех сторонах башни, и на всех циферблатах стрелки должны были показывать одно и то же время. Это достигалось путем устройства соответствующей колесной передачи, соединенной с часовым колесом и позволявшей одновременно перемещать стрелки часов на одно деление на всех четырех циферблатах.

Самую раннюю историю механических часов индивидуального пользования невозможно восстановить с полной достоверностью. Но есть основания утверждать, что часы такого рода появились почти сразу по изобретении механических часов, то есть в конце XIII или в начале XIV века, в жилищах итальянских князей и во дворце Филиппа IV Красивого во Франции. В описи имущества последнего упоминаются комнатные часы с двумя свинцовыми гирями.

Другое упоминание об индивидуальных часах имеется в поэме «Роман о Розе» Жана де Мена, написанной в XIII веке. В четверостишии, относящемся к часам, говорится: «И тогда он заставил часы звонить в своих залах и в своих комнатах посредством хитроумно изобретенных колесиков, двигающихся непрерывно».

Большим недостатком комнатных часов XV века была величина колес: некоторые были таких размеров, что выступали за раму.

В XV–XVI веках механические часы стали применяться в астрономических обсерваториях. В 1471 году астроном и математик Региомонтан поселился в Нюрнберге и вместе с Бернгардом Вальтером, меценатом и любителем астрономии, построил обсерваторию, снабженную превосходными инструментами, которые были изготовлены выдающимися нюрнбергскими механиками. Здесь в 1484 году впервые были применены к астрономическим наблюдениям механические часы, приводимые в действие гирей.

В середине XVI века в некоторых больших часах появляется минутная стрелка, а иногда и секундная. Примерно в то же время входит в употребление будильник. Тогда же наметилась широкая потребность в часах индивидуального пользования, в XVII веке спрос на них возник не только среди знати, но и среди буржуазии, а особенную потребность в надежных небольших часах высказывали мореходы. Однако удовлетворить спрос стало возможным лишь после применения в часах ходовой пружины.

Явление упругости было невозможно обнаружить при изучении физических свойств камня и возведенных из него сооружений. Свойство упругости рельефно проступает лишь при функционировании конструкций из стали. Теперь на это обратили внимание, и именно из стали многими учеными-механиками XVII века были впервые изготовлены пружины для часовых механизмов.

С этого момента в области часового дела начался действительный прогресс и значительное распространение часов среди широкого круга горожан. Первые переносные механические часы изготовил по всей вероятности около 1510 года нюрнбергский слесарь Петр Генлейн, когда он заменил гирю плоской спиральной пружиной. Так пружинный привод часов, принцип которого был заимствован от механизмов движущихся фигур-автоматов XIII века, открыл путь к миниатюризации часов. Однако задача создания точных часов для нужд мореплавания еще долго не была решена.

Попытки создать механические часы для кораблей предпринимались уже в 1530 году. Но часы с балансовым шпиндельным спуском не обеспечивали достаточно точного хода в условиях морской качки. Первым шагом к созданию надежных часов стало включение в их механизм маятника в качестве регулятора. В 1581 году Галилео Галилей (Италия) открыл, что период колебаний маятника с небольшим размахом не зависит от амплитуды этого размаха. В 1641 году он сконструировал маятниковые часы для использования в навигации, а после его смерти их частично построил его сын.

Гюйгенс (Голландия) посвятил работе над маятниковыми часами около двадцати лет своей жизни, пытаясь приспособить их к нуждам мореплавания. Он дополнил их многими ценными приспособлениями и начиная с 1657 года создал несколько часов повышенной точности. Но все его попытки, как и усилия многих других механиков, не приводили вплоть до 1726 года к достижению основной цели: заставить маятник правильно качаться в условиях качки судна.

Мы видим, что механические часы развивались стараниями сотен людей – ученых, механиков, слесарей в течение долгого времени, не менее чем пяти веков. Профессия часовщика стала очень почетной. Цех часовщиков образовался в Париже еще в 1453 году, но только через столетие (в 1544-м) он получил свой первый статут, утвержденный декретом короля; тогда имелись уже три категории часовщиков: специалисты по башенным часам, специалисты по настольным часам и будильникам и специалисты по изготовлению пружинных переносных часов.

Большинство изобретателей машин в XVIII веке были часовщиками или были близко знакомы с устройством часов. Увлечение в XVII и XVIII веках часами определялось не только тем, что они имели широкое практическое применение, но и тем, что они заключали в себе принцип автоматизма, который стали переносить на различные объекты фабричной техники.

Часы являются чрезвычайно важной «машиной» как с точки зрения механической, так и социальной. В середине XVIII века, еще до наступления индустриальной революции, они стали уже весьма совершенными и точными. Как первый автомат, примененный для практических целей, и как образец точности часы неизменно привлекали внимание всех изобретателей. В их устройстве искали ключ к решению многих технических вопросов.

Уже Коперник находил возможным, по аналогии с часами, судить об устройстве мироздания. Философы XVII века стали прибегать для объяснения механической закономерности физического мира к сравнению ее «с искусственными механизмами, сделанными рукой человеческой»: нередко Вселенную сравнивали с затейливым механизмом страсбургских часов.

Можно констатировать, что распространение башенных часов и нового счета времени было прямым следствием развития торговли и ремесел в городах Западной Европы в XIV веке. Развитие экономики усиливало мощь и значение этих городов и способствовало переходу инициативы из рук духовенства к светскому обществу или секуляризации общества. Но само появление часов ускорило технический прогресс и, кстати, дало новый товар торговле.

Ускорение прогресса