G до H означает, что наследственный материал сперматозоида отца имеет прямое каузальное влияние на наследственность потомства. Отсутствие стрелки от G до H’ означает, что сперматозоид отца, давший жизнь потомку О, не влиял каузально на потомка О’.
Эти буквы, называемые путевыми коэффициентами, отражают силы каузальных воздействий, которые Райт хотел найти. Грубо говоря, путевой коэффициент отражает долю изменчивости в конечной переменной, которая определяется исходной переменной. Так, достаточно очевидно, что 50 % наследственности любого потомка передается от каждого из его двух родителей, поэтому а должно быть равно ½ (по техническим причинам Райт предпочитал брать квадратный корень, так чтобы а = 1/ √2 и а 2 = ½). Такая интерпретация путевых коэффициентов, в терминах доли изменчивости, объясняемой данной переменной, в те времена была разумной. Современная причинная интерпретация иная: путевые коэффициенты представляют собой результаты гипотетического воздействия исходной переменной. Однако появления концепции воздействия в 40-х годах ХХ века нужно было ждать еще долго, и Райт, который написал свою статью в 1920 году, не мог ей воспользоваться. К счастью, в простых моделях, проанализированных им тогда, обе интерпретации приводят к одинаковым результатам.
Я хочу подчеркнуть, что путевая диаграмма не просто красивая картинка, это мощный вычислительный аппарат, потому что правило для подсчета корреляций (мост со второй на первую ступень) включает прослеживание путей, соединяющих две переменные между собой, и перемножение коэффициентов, встреченных по пути. Обратите также внимание, что опущенные на рисунке стрелки на самом деле выражают более важные допущения, чем те, которые на нем присутствуют. Не изображенная стрелка означает, что каузальное воздействие равно нулю, в то время как присутствующая стрелка ничего не говорит нам о силе воздействия (если только мы априорно не придадим путевому коэффициенту определенное значение).
Работа Райта была настоящим прорывом и заслуживает упоминания в качестве эпохального результата в биологии. Несомненно, это важнейшая веха в истории науки о причинности. Рис. 11 — первая опубликованная каузальная диаграмма, первый шаг ХХ столетия на вторую ступень Лестницы Причинности, и шаг не робкий, а уверенный и обдуманный! На следующий год Райт опубликовал намного более общую работу под названием «Корреляция и причинность», объясняющую, как путевой анализ работает на другом материале, не только на морских свинках. Не могу представить, какую реакцию на свою публикацию ожидал Райт, но то, что воспоследовало, определенно ошеломило его. Это было опровержение, опубликованное в 1921 году неким Генри Найлзом, учеником американского статистика Раймонда Пирла, который, в свою очередь, был учеником Карла Пирсона, крестного отца статистики.
Академический мир полон цивилизованного людоедства, и мне за свою в основном тихую научную карьеру тоже приходилось испытывать его на собственной шкуре, но все же мне редко попадались настолько злобные критики, как Найлз. Он начинает с длинной серии цитат из своих героев, Карла Пирсона и Фрэнсиса Гальтона, доказывая избыточность или даже бессмысленность термина «причина». Он делает вывод: «Противопоставление „причинности” и „корреляции” необоснованно, потому что причинность — это просто совершенное проявление корреляции». В этом предложении он прямо повторяет то, что Пирсон писал в своей «Грамматике науки».
Далее Найлз старается принизить всю методологию Райта. Он пишет: «Главная ошибка этого метода — предположение, что возможно априори задать относительно простую графическую схему, которая будет верно отражать пути воздействия нескольких переменных друг на друга и на общий результат». Наконец, Найлз разбирает несколько примеров и, путаясь в расчетах, поскольку не дал себе труда разобраться в правилах, установленных Райтом, приходит к противоположным выводам. В итоге он заявляет: «Таким образом, мы заключаем, что с точки зрения философии основания метода путевых коэффициентов ложны, в то время как на практике результаты применения его там, где возможна проверка, доказывают его совершенную ненадежность».
С научной точки зрения тратить время на детальный разбор опровержения Найлза, вероятно, не стоит, но его статья очень важна для нас, историков науки о причинности. Во-первых, она бесхитростно отражает отношение большинства ученых того поколения к причинности и тотальную власть его наставника Карла Пирсона над научными умами того времени. Во-вторых, возражения Найлза мы продолжаем слышать и сегодня. Конечно, иногда ученые не представляют с точностью всю сложную сеть взаимоотношений между изучаемыми переменными. В этом случае, предполагал Райт, мы можем использовать диаграмму в исследовательском режиме; мы можем постулировать определенные причинно-следственные отношения и рассчитать предсказанные корреляции между переменными. Если они противоречат объективным данным, у нас появляется свидетельство, что отношения, допущенные нами, ложны. Этот способ применения путевых диаграмм, вновь открытый в 1953 году Гербертом Саймоном (ставшим в 1978 году лауреатом Нобелевской премии по экономике), вдохновил множество исследований в общественных науках.
Хотя нам и не нужно знать все причинно-следственные взаимоотношения между интересующими нас переменными и мы в силах делать некоторые выводы, обладая только частичной информацией, Райт подчеркивает один момент с абсолютной четкостью: каузальные выводы невозможно сделать, не имея каузальной гипотезы. Это перекликается с теми выводами, которые мы сделали в главе 1: невозможно ответить на вопрос второй ступени Лестницы Причинности исключительно на основе данных первой ступени. Иногда меня спрашивают: не делает ли это каузальные умозаключения тавтологичными, замкнутыми сами на себя? Разве тем самым вы не предполагаете именно то, что хотите доказать? Правильный ответ — нет. Объединяя очень приблизительные, качественные и очевидные предположения (например, что цвет меха у потомства не влияет на цвет меха родителей) с данными по морским свинкам за 20 лет наблюдений, Райт получил количественный и совершенно неочевидный результат: окраска меха на 42 % определяется наследственностью.
Получить неочевидный результат из очевидных данных — это не тавтология, это научный триумф, заслуживающий, чтобы ему воздали соответствующие почести. Вклад Райта уникален, потому что информация, приведшая к умозаключению (о наследственной компоненте в 42 %) была на двух разных и почти несовместимых математических языках: языке диаграмм, с одной стороны, и языке данных — с другой. Еретическая идея объединения качественной «путевой» информации и количественной информации данных (два чуждых друг другу языка!) была чудом, которое привлекло меня, специалиста по компьютерным наукам, к этой проблематике. Многие люди до сих пор повторяют ошибку Найлза, думая, что цель каузального анализа — доказать, что X — это причина Y, или просто найти причину Y с нуля. Это проблема каузальных открытий, которая была моей честолюбивой мечтой еще в те времена, когда я впервые погрузился с головой в графическое моделирование, и до сих пор остается областью активного научного поиска. Напротив, исследования Райта, как главы этой книги, сосредоточены на том, чтобы представить правдоподобные представления о причинно-следственных связях с помощью какого-либо математического языка, объединить их с эмпирическими данными и ответить на вопросы о причинности, имеющие практическое значение. Райт с самого начала понимал, что каузальные открытия, поиск причин — дело намного более сложное, если вообще реальное. В своем ответе Найлзу он пишет: «Автор [т. е. сам Райт] никогда не претендовал на то, что теория путевых коэффициентов может дать нам общую формулу для выяснения причинно-следственных взаимодействий. Он хотел бы подчеркнуть, что сочетание знаний о корреляциях со знанием причинно-следственных связей для получения конкретных результатов не имеет ничего общего с выведением причинно-следственных взаимоотношений из корреляций, о котором пишет Найлз».
E pur si muove (и все-таки она вертится)
Если бы я был профессиональным историком, я бы остановился на этом месте. Но, поскольку я обещался быть историком-вигом, мне не удастся сдержать восхищения точностью слов Райта в цитате, приведенной в конце предыдущего раздела, которые не устарели за 90 лет с тех пор, как он высказал их впервые, и которые в основном и определили парадигму современного каузального анализа.
Мое восхищение точностью формулировки Райта уступает только восхищению его смелостью и целеустремленностью. Только представьте себе ситуацию, сложившуюся в 1921 году. Математик-самоучка в одиночку противостоит гегемонии всего статистического истеблишмента. Они говорят ему: «Ваш метод основан на полном непонимании природы причинности в научном смысле». Он стоит на своем: «Вовсе нет! Мой метод позволяет получать важные результаты и идет в этом дальше, чем все, что смогли придумать вы». Они говорят: «Наши великие гуру уже рассматривали эти вопросы 20 лет назад и решили, что то, что ты делаешь, лишено всякого смысла. Ты просто объединяешь корреляции с корреляциями и получаешь снова корреляции. Когда вырастешь — поймешь». А он продолжает: «Я не пытаюсь опровергнуть ваших гуру, но лопата — это лопата. Мои путевые коэффициенты — это не корреляции. Это нечто совершенно иное — это каузальные воздействия».
Представьте, что вы снова в детском саду и все дети над вами смеются, потому что вы считаете, что 3 + 4 = 7, в то время как любому ребенку известно, что 3 + 4 = 8. Вы идете к воспитательнице — а она тоже уверяет вас, что 3 + 4 = 8. Удалось бы вам не заплакать и не решить, что, наверное, это с вами что-то не то? В таких ситуациях даже самые сильные духом люди начинают сомневаться в истинности своих убеждений. Я сам был в таком детсаду, я знаю.
Но Райт не сдался. И это был не простой арифметический вопрос, в котором возможна независимая верификация. Ранее только философы осмеливались иметь собственное мнение о природе причинности. Откуда у Райта взялась эта внутренняя убежденность, что он на верном пути, а вся остальная группа детсада заблуждается? Может быть, то, что он вырос на Среднем Западе и учился в маленьком, никому не известном колледже, приучило его полагаться на собственные силы и дало понять, что самые надежные знания — это те, которые ты добываешь сам.