крыл его заново в 1998 году. Сегодня он есть в каждом сотовом телефоне.
Как бы то ни было, турбокоды имели ошеломляющий успех. До турбореволюции сотовые сети 2G использовали «мягкое декодирование» (т. е. вероятности), а не распространение убеждений. В сетях 3G применили турбокоды Берроу, а в 4G — турбокоды Галлагера. С точки зрения потребителя это означает, что ваш телефон потребляет меньше энергии, а аккумулятор работает дольше, потому что кодирование и декодирование — самые энергоемкие процессы. Кроме того, более совершенные коды означают, что не нужно находиться как можно ближе к вышке сотовой связи, чтобы получить высококачественную передачу. Другими словами, байесовские сети позволили производителям телефонов выполнить обещание: больше полосок в больше мест.
От байесовских сетей к диаграммам причинности
Возможно, после главы, посвященной байесовским сетям, у вас возник вопрос: как они относятся к остальному в этой книге, в частности к диаграммам причинности вроде тех, что приведены в главе 1? Конечно, я обсудил их так подробно отчасти потому, что они привели к причинности лично меня. Но, что еще важнее как с теоретической, так и с практической точки зрения, байесовские сети — ключ, который позволяет диаграммам причинности взаимодействовать с данными. Все вероятностные свойства байесовских сетей (включая связки, которые мы обсуждали выше в этой главе) и разработанные для них алгоритмы распространения убеждений подходят и для диаграмм причинности. Более того, они необходимы для понимания причинного вывода.
Основные различия между байесовскими сетями и диаграммами причинности заключаются в том, как они построены и в каких целях используются. Байесовская сеть — это всего лишь компактное представление огромной таблицы вероятностей. Стрелки означают, что вероятности дочерних узлов связаны со значениями родительских узлов определенной формулой (таблицы условных вероятностей) и что этого отношения достаточно, т. е. знание дополнительных родителей не изменит формулу. Точно так же отсутствие стрелки между любыми двумя узлами означает, что они независимы, если нам известны значения их родителей. Мы видели простую версию этого утверждения выше, когда обсуждали эффект экранирования в цепях и звеньях. В цепочке A → B → C отсутствующая стрелка между A и C означает, что A и C независимы, если мы знаем значения их родителей. Поскольку у A нет родителей, а единственный родитель C — это B, отсюда следует, что A и C независимы, если мы знаем значение B, что согласуется со сказанным выше.
Однако если бы та же диаграмма была сделана как диаграмма причинности, то и замысел, который лежал бы в ее основе, и пути интерпретации изменились бы. На этапе создания нужно рассмотреть каждую переменную, скажем С, и спросить себя, какие другие переменные она «слушает», прежде чем выбрать значение. Цепочка A → B → C означает, что B слушает только A, C слушает только B и A не слушает; т. е. она определяется внешними силами, которые не входят в нашу модель.
Эта метафора слушания обобщает все знания, которые передает причинная сеть; остальные можно вывести, иногда для этого понадобятся данные. Обратите внимание, что, если мы изменим порядок стрелок в цепочке, таким образом получив A ← B ← C, причинное прочтение структуры резко изменится, но условия независимости останутся прежними. Отсутствие стрелки между A и C по-прежнему будет означать, что A и C независимы, если нам известно значение B, как в исходной цепочке. Из этого вытекают два чрезвычайно важных следствия. Во-первых, причинные допущения не изобретаются по нашей прихоти; они подвергаются тщательной проверке данными и могут быть сфальсифицированы. Например, если наблюдаемые данные не показывают, что A и C являются независимыми при наличии B, то мы вправе с уверенностью сделать вывод, что модель цепочки несовместима с данными и ее необходимо отбросить (или исправить). Во-вторых, графические свойства диаграммы определяют, какие модели причинно-следственных связей различают по данным, а какие навсегда останутся неразличимыми, независимо от объема данных. Так, мы не в состоянии отличить вилку A ← B → C от цепочки A ← B ← C только по данным, потому что две диаграммы подразумевают одинаковые условия независимости.
Еще один удобный способ осмыслить каузальные модели — представить их в виде гипотетических экспериментов. Каждую стрелку можно считать утверждением об итоге гипотетического эксперимента. Стрелка от А к С означает, что если мы в силах повлиять только на А, то будем ожидать, что вероятность С изменится. Отсутствующая стрелка от А к С означает, что в том же эксперименте мы не увидим изменений в С, если сохраним родителей С неизменными (другими словами, В в примере выше). Обратите внимание на то, что в первом случае мы рассуждали в терминах вероятности («если нам известно значение В»), а теперь в терминах причинно-следственных связей («если мы сохраним В неизменным»), а это подразумевает, что мы физически оградим В от изменений и отключим стрелку от А к В.
Причинные рассуждения, необходимые для создания каузальной сети, конечно же, дадут результат, расширив группу вопросов, на которые она может ответить. В то время как байесовская сеть способна всего лишь рассказать, насколько вероятно одно событие, если мы наблюдаем другое (информация первого уровня), диаграммы причинности в состоянии ответить на вопросы об интервенции и контрфактивные вопросы. Например, вилка A ← B → C однозначно сообщает нам, что, если «пошевелить» А, это не окажет никакого эффекта на С, каким бы интенсивным ни было шевеление. Однако байесовская сеть не рассчитана на учет шевелений и не позволяет увидеть разницу между наблюдением и действием или в самом деле отличить вилку от цепочки. Другими словами, и вилка, и цепочка показали бы, что наблюдаемые изменения в А ассоциируются с изменениями в С, не давая предсказаний об эффекте воздействия на А.
Теперь мы переходим ко второму, возможно, более важному эффекту байесовских сетей на причинный вывод. Открытые нами отношения между графической структурой диаграммы и данными, которые она представляет, теперь помогают нам моделировать шевеления, не делая этого физически. В частности, последовательно используя обусловливание, мы предскажем эффект действий или интервенций, не проводя собственно эксперимент. Чтобы это продемонстрировать, снова рассмотрим причинную вилку A ← B → C, для которой мы сочли корреляцию A и C ложной. Это реально подтвердить экспериментом, в котором мы шевелим A и не находим корреляции A и C. Но можно все сделать лучше. Для этого нужно попросить диаграмму эмулировать эксперимент и сказать нам, способно ли ограничение по определенному параметру воспроизвести корреляцию, которая будет преобладать в эксперименте. Ответ последует положительный: «Корреляция между А и С, измеренная после ограничения по В, окажется равной корреляции, которую мы увидим в эксперименте». Эту корреляцию можно оценить, использовав данные, и в приведенном случае она будет нулевой, что адекватно подтверждает наш интуитивный вывод: пошевелив А, мы не окажем никакого воздействия на C.
Эта способность эмулировать интервенции с помощью умных наблюдений не была бы достигнута, если бы не статистические свойства байесовских сетей, которые были обнаружены между 1980 и 1988 годами. Теперь мы решаем, какой набор переменных необходимо измерить, дабы предсказать эффект интервенций на базе наблюдений. Также мы в состоянии ответить на вопрос «Почему?». Например, кто-то спросит: почему воздействие на А заставляет С меняться? Действительно ли это прямой эффект А или это эффект медиации от переменной В? Если это и то и другое, можем ли мы оценить, какая доля этого эффекта обусловлена В?
Чтобы ответить на такие вопросы о медиации, надо предвидеть две одновременные интервенции: когда мы изменяем А и сохраняем В постоянным (чтобы отличить от обусловливания по В). Если нам удастся осуществить эту интервенцию физически, то мы получим ответ на наш вопрос. Но, будучи зависимыми от наблюдательных исследований, мы должны имитировать два эти действия с помощью ряда осознанных наблюдений. И вновь графическая структура диаграммы подскажет нам, возможно ли это.
Все это еще не было открыто в 1988 году, когда я начал размышлять, как объединить причинность с диаграммами. Я знал только, что байесовские сети в существовавшей тогда форме не могли ответить на вопросы, которые я задавал. Осознание того, что на основании одних лишь данных нельзя даже отличить A ← B → C от A → B → C, было источником боли и фрустрации.
Я знаю, что вам, читатель, уже не терпится узнать, как диаграммы причинности позволяют нам делать вычисления вроде тех, которые я только что описал. И мы туда доберемся — в главах с седьмой по девятую. Но пока мы не готовы, потому, начиная говорить о наблюдательных и экспериментальных исследованиях, мы тут же покидаем мирные воды — сферу искусственного интеллекта — и сразу погружаемся в бурные воды статистики, которые вспенились после несчастливого расставания с причинностью. В ретроспективе оказалось, что борьба за принятие байесовских сетей в сфере ИИ была приятной прогулкой — да нет, роскошным круизом! — по сравнению с боем за диаграммы причинности, который мне пришлось вынести потом. И эта битва идет до сих пор — еще остались островки сопротивления.
Чтобы ориентироваться в этих новых водах, нужно будет понять способы, которыми традиционные статистики научились справляться с причинно-следственные связями, и ограничения этих способов. Поднятые выше вопросы о результатах интервенции, включая прямые и косвенные эффекты, не рассматриваются в традиционной статистике прежде всего потому, что отцы-основатели этой науки очистили ее от языка причин и следствий. Но статистики тем не менее считают допустимым говорить о причинах и следствиях в ситуации рандомизированного контролируемого исследования, в котором препарат