Думай «почему?». Причина и следствие как ключ к мышлению — страница 40 из 82

D, похоже, снижает риск сердечного приступа у населения в целом. Добро пожаловать в загадочный мир парадокса Симпсона!

Почти 20 лет я пытаюсь убедить научное сообщество в том, что парадокс Симпсона ставит нас в тупик из-за неправильного применения законов причинности к статистическим соотношениям. Если использовать причинно-следственные обозначения и диаграммы, то можно четко и однозначно решить, предотвращает ли препарат D сердечные приступы или вызывает их. По сути, парадокс Симпсона — это загадка, связанная с конфаундерами, и ее реально решить теми же методами, которые мы уже использовали в похожем случае. Любопытно, что авторы трех из четырех работ 2016 года, о которых я упомянул, продолжают сопротивляться этому решению.

Любая попытка разрешить парадокс (особенно если ему уже несколько десятилетий) должна соответствовать базовым критериям. Во-первых, как я сказал выше в связи с парадоксом Монти Холла, ей следует объяснить, почему люди находят парадокс удивительным или невероятным. Во-вторых, ей нужно показать тип сценариев, в которых возможно его появление. В-третьих, когда парадокс все-таки возникает, и нам надо сделать выбор между двумя правдоподобными, но противоречивыми утверждениями, важно указать, какое из утверждений является правильным.

Давайте начнем с вопроса, почему парадокс Симпсона вызывает удивление. Чтобы ответить на него, надо провести различие между двумя вещами — инверсией Симпсона и парадоксом Симпсона.

Инверсия Симпсона — это чисто числовое явление: как видно из табл. 7, это изменение относительной частоты какого-то события в двух или более различных выборках при объединении выборок. В нашем примере мы увидели, что 3/40 > 1/20 (частота сердечных приступов среди женщин, принимавших и не принимавших лекарство D) и 8/20 > 12/40 (частота среди мужчин). Тем не менее, когда мы объединили показатели женщин и мужчин, неравенство изменило направление на противоположное: (3 + 8) / (40 + 20) < (1 + 12) / (20 + 40). Если вы считали такой поворот математически невозможным, то, скорее всего, неверно применяли или неверно запомнили свойства дробей. Многие люди, кажется, считают, что если A/B>a/b и C/D>c/d, то (A + C) / (B + D) > (a + c) / (b + d). Но это общее представление ошибочно. Только что приведенный нами пример его опровергает.

Инверсию Симпсона можно обнаружить в наборах данных из реальной жизни. Вот прекрасный образец для фанатов бейсбола, касающийся двух звездных бейсболистов — Дэвида Джастиса и Дерека Джитера. В 1995 году у Джастиса был более высокий средний показатель: 0,253 против 0,250. В 1996 году у Джастиса снова был более высокий средний показатель 0,321 против 0,314. А в 1997 году он набрал больше очков, чем Баттер, третий сезон подряд: 0,329 против 0,291. Тем не менее за три сезона вместе взятых больше очков оказалось у Джитера! Табл. 8 демонстрирует расчеты для читателей, которые хотели бы их проверить.

Как один игрок может быть хуже, чем другой, в 1995, 1996 и 1997 годах, но лучше в течение трехлетнего периода? Эта инверсия напоминает о лекарстве из нашего примера. На самом деле это невозможно; все дело в том, что мы использовали слишком простое слово («лучше») для описания сложного процесса усреднения по разным сезонам. Обратите внимание, что выходы на биту (знаменатели) не распределяются равномерно по годам. В 1995 году у Джитера было их очень мало, поэтому его довольно низкий средний показатель в этом году мало повлиял на общий средний показатель. Однако у Джастиса было намного больше выходов на биту в его наименее продуктивном году, 1995-м, и это привело к снижению общего среднего показателя. Как только вы поймете, что «лучший нападающий» определяется соперничеством лицом к лицу, а средневзвешенным значением, которое учитывает, как часто играл каждый из них, думаю, все это будет уже не так удивительно.


Таблица 8. Данные (невымышленные), иллюстрирующие инверсию Симпсона


Инверсия Симпсона, конечно же, удивляет некоторых людей и даже фанатов бейсбола. Каждый год у меня появляются студенты, которые сначала не могут поверить в такие вещи. Но потом они идут домой, работают над подобными примерами и утрачивают сомнения. Просто они начинают по-новому, немного глубже понимать, как работают числа (и особенно агрегированные показатели). Я не называю инверсию Симпсона парадоксом, потому что это по большому счету вопрос исправления ошибочных представлений о том, как ведут себя средние значения. Парадокс — нечто большее: он должен повлечь за собой конфликт между двумя глубоко укоренившимися убеждениями.

У профессиональных статистиков, которые работают с числами каждый день своей жизни, еще меньше оснований считать инверсию Симпсона парадоксом. Простое арифметическое неравенство не могло бы озадачить и увлечь их до такой степени, чтобы они продолжали писать о нем статьи 60 лет спустя.

Вернемся теперь к нашему основному примеру — парадоксу с лекарством. Я объяснил, почему три утверждения («вредно для мужчин», «вредно для женщин» и «полезно для людей), интерпретируемые как увеличение и уменьшение пропорций, не противоречат друг другу математически. И все же вам может показаться, что это физически невозможно. Странно, что лекарство способно вызвать одновременно у меня и у вас сердечный приступ, но в то же время предотвратить сердечный приступ у нас обоих. Это интуитивное чувство универсально; оно появляется у нас в двухлетнем возрасте, задолго до того, как мы начинаем изучать числа и дроби. Поэтому я думаю, вы испытаете облегчение, узнав, что не нужно отказываться от интуиции. Лекарства с такими свойствами пока не изобрели и не изобретут никогда, что мы можем доказать математически.

Первым внимание к этому интуитивно очевидному принципу привлек статистик Леонард Сэвидж. В работе 1954 года он назвал его «верное дело». Он писал: «Бизнесмен задумывается о покупке определенного объекта недвижимости. При этом он учитывает исход следующих президентских выборов. Чтобы прояснить этот вопрос, он спрашивает себя, купил бы он этот объект, если бы знал, что выиграет кандидат-демократ, и приходит к выводу, что да. Потом он задает тот же вопрос о кандидате-республиканце и приходит к такому же выводу. Осознав, что покупка состоялась бы в любом случае, он решается на нее, несмотря на то, что не знает, кто победит. Очень редко решение может быть принято на основе этого принципа, но… Я не знаю другого экстралогического принципа, управляющего решениями, который было бы так легко принять».

Замечание Сэвиджа в конце цитаты особенно проницательно: он понимает, что принцип верного дела экстралогический. Более того, если интерпретировать его верно, окажется, что он основан на причинно-следственной, а не классической логике. Кроме того, он говорит, что «не знает иного… принципа, который». Очевидно, что он говорил о нем со многими людьми, и они нашли подобное рассуждение очень убедительным.

Чтобы связать принцип верного дела у Сэвиджа с обсуждением выше, предположим, что на самом деле выбор стоит между двумя объектами недвижимости — A и B. Если победит демократ, у бизнесмена есть 5 %-ный шанс заработать доллар на объекте A и 8 %-ный шанс заработать доллар на объекте B. Таким образом, B предпочтительнее A. Если выиграет республиканец, у него есть 30 %-ный шанс заработать доллар на объекте A и 40 %-ный шанс заработать доллар на объекте B. И снова В оказывается предпочтительнее А. Согласно принципу верного дела, ему точно нужно купить объект B. Но наблюдательные читатели заметят, что числовые величины здесь такие же, как и в истории Симпсона, а значит, покупка объекта B может оказаться поспешным решением.

Более того, аргумент, приведенный выше, содержит очевидный недостаток. Если решение бизнесмена купить недвижимость способно повлиять на исход выборов (например, если за его действиями следили СМИ), то покупка недвижимости А окажется в его интересах. А вред от избрания не того президента перевесит любую финансовую выгоду от сделки, когда президент уже будет выбран.

Чтобы принцип верного дела проявил себя, мы должны утвердиться в том, что решение бизнесмена не повлияет на исход выборов. Если бизнесмен уверен, что его решение не окажет воздействия на вероятность победы демократов или республиканцев, он может спокойно покупать недвижимость В.

Обратите внимание, что отсутствующий ингредиент (который Сэвидж не указал явно) — предположение о причине. Правильная версия его принципа будет выглядеть так: действие, которое, по нашему предположению, повышает вероятность некоего результата и в том случае, если событие С произошло, и в том случае, если оно не произошло, повысит его вероятность также и в случае, когда мы не знаем, произошло ли С… при условии, что само действие не изменит вероятность C. В частности, не существует такого понятия, как «хорошее / хорошее / плохое» лекарство. Этот исправленный вариант принципа Сэвиджа не вытекает из классической логики: чтобы доказать его, понадобится причинное исчисление с привлечением оператора do. Наша сильная интуитивная убежденность в невероятности такого лекарства предполагает, что люди (а также машины, запрограммированные на подражание человеческим мыслям) используют что-то вроде do-исчисления для направления интуиции.

В соответствии с исправленным принципом, одно из следующих трех утверждений должно быть ложным: препарат D повышает вероятность сердечного приступа у мужчин и женщин; препарат D снижает вероятность сердечного приступа у населения в целом; препарат не меняет количество мужчин и женщин. Поскольку крайне маловероятно, что лекарство может изменить пол пациента, одно из первых двух утверждений должно быть ложным.

Какое же? Не стоит искать подсказок в табл. 7. Чтобы ответить на этот вопрос, нужно рассмотреть не только данные, но и как они были получены. Как всегда, обсудить этот процесс без диаграммы причинности просто невозможно.