E=mc2 — страница 16 из 61

Подобное же отдаление произошло и между Эйнштейном и его женой, Милевой. В университете она вместе с ним изучала физику да и вообще была очень умна. Мужчины, занимающиеся наукой, редко женятся на коллегах — много ли таких насчитаешь? — и Эйнштейн едва ли не хвастался перед университетскими друзьями тем, как ему повезло. Первое его письмо к Милеве было сдержанным:


Цюрих, среда [16 февраля 1898]

Хочу рассказать тебе о том, чем мы занимаемся… Гурвиц читает нам лекции о дифференциальных уравнениях (за исключением уравнений в частных производных), а также о рядах Фурье…

Однако отношения их, как показывают выдержки из писем, писавшихся в августе и сентябре 1900-го, развивались:

Перед моими сонными глазами снова проплыли несколько пустых, скучных дней — знаешь, из тех, в какие встаешь поздно, потому что ни думать ни о чем, ни сделать ничего толкового не можешь, и идешь прогуляться, пока твою комнату приводят в порядок… А потом слоняешься без дела, малодушно дожидаясь обеда…

Однако все меняется, нас ожидает чудеснейшая в мире жизнь. Прекрасная работа, мы с тобой вместе…

Не грусти, возлюбленная моя. Нежно целую тебя, твой

Альберт


Совместная их жизнь начиналась счастливо. Подняться до его уровня жена не могла, однако студенткой была хорошей — на выпускных экзаменах, где Эйнштейн набрал 4,96 балла, она подошла близко к нему, получив 4,0 — и следить за его дальнейшей работой определенно была в состоянии. (Миф о том, что именно благодаря ей была написана одна из ключевых работ Эйнштейна, произрастает из сербской националистической пропаганды 1960-х и связан с тем, что семья Милевы изначально проживала под Белградом.) Но затем у них появились дети, а доход семьи был так низок, что они могли позволить себе лишь приходящую служанку, — и за этим последовала традиционная дискриминация женщины. Когда к ним приходили в гости высокообразованные друзья, жена Эйнштейна старалась составлять им компанию, однако делать это, держа на коленях постоянно требующего внимания трехлетнего сына, занятие не из простых. Ты хочешь принимать участие в разговорах, но постоянно отвлекаешься на то, чтобы найти нужные игрушки, нарисовать сыну картинку, убрать разбросанную им еду и, в конце-концов, гости перестают прерывать беседу, чтобы посвятить тебя в то, что ты пропустила. Тебя больше не берут в расчет.

Когда в 1909 году Эйнштейн покинул патентное бюро, его начальник так не смог понять, почему этот молодой человек бросает такую хорошую карьеру. Ему все же предложили место в системе университетов Швейцарии, а затем, проработав некоторое время в Праге, — где он музицировал и участвовал в беседах гостей салона, который время от времени посещал стеснительный молодой человек по имени Франц Кафка, — Эйнштейн получил профессорский пост в Берлине. И этот успех почти полностью изолировал его от прежних бернских друзей. Он также официально разошелся с женой и лишь время от времени навещал ее, чтобы повидаться с двумя своими детьми, которых обожал.

К этому времени работа его приняла новое направление. Уравнение E=mc2 было лишь малой частью всей специальной теории относительности. В 1915 году Эйнштейн занимался совершенствованием теории еще более величественной, столь мощной, что теперь уже специальная теория относительности составляла лишь малую ее часть. (В «Эпилоге» приводятся некоторые сведения об этом труде 1915 года — «В сравнении с этой проблемой, исходная теория относительности — просто детская игра»). Эйнштейну еще предстояло вновь обратиться к своему уравнению — ненадолго, — но уже в гораздо более зрелые годы.

И здесь рассказываемая нами история совершает крутой поворот. Начальная теоретическая разработка уравнения завершилась, персональный вклад Эйнштейна в то, о чем идет наш рассказ, постепенно начинает сходить на нет. Физики Европы согласились с истинностью E=mc2: с тем, что вещество можно, в принципе, подвергнуть преобразованию, которое позволит извлечь «замороженную» в нем энергию. Однако как этого добиться, никто по-настоящему не знал.

Правда, один намек на это имелся. Его давали странные объекты, исследованием которых занимались Мария Кюри и другие: такие тяжелые металлы, как радий и уран, а также другие вещества, способные непонятным образом неделю за неделей и месяц за месяцем источать энергию, никогда не исчерпывая ее «скрытый» в них источник.

Теперь изучать происходящее с ними начали многие лаборатории. Однако для того, чтобы обнаружить механизмы, создающие эти огромные выбросы энергии, недостаточно было продолжать смотреть лишь на поверхность вещей, просто заниматься измерением веса, окраски или внешних химических свойств загадочно теплых радия или урана.

Нет, ученым следовало пойти внутрь, в самое сердце этих веществ. Это, в конечном счете, и показало им, как подобраться к энергии, обещанной уравнением E=mc2. Но что же обнаружили они, вглядываясь в мельчайшие внутренние структуры обычного вещества?

Глава 8. Внутри атома

Университетских студентов 1900 года учили тому, что обычное вещество — то, из которого состоят кирпичи, сталь, уран и все прочее, — и само состоит из мельчайших частиц, именуемых атомами. Однако, из чего состоят атомы, этого не знал никто. Общее мнение сводилось к тому, что они подобны сплошным, блестящим шарикам, вроде тех, которые крутятся в шарикоподшипниках, — что атомы это такие посверкивающие сущности, заглянуть внутрь которых невозможно. И только в 1901 году, благодаря исследованиям Эрнеста Резерфорда, рослого мужчины с медвежьим басом, работавшего в Манчестерском университете, об атомах возникли представления более ясные.

Резерфорд оказался в Манчестере, а не в Оксфорде и не в Кембридже, не потому, что происходил из провинциальной Новой Зеландии и говорил с акцентом простолюдина. Ученому, умеющему держаться достаточно скромно, такие недостатки легко прощают. Проблема состояла, скорее, в том, что, еще обучаясь в Кембридже, Резерфорд показал себя не способным почтительно относиться к старшим. А как-то раз он и вовсе выступил с предложением создать совместное предприятие, которое торговало бы одним из его изобретений, и это предложение было приравнено к смертному греху. И однако же, причина, по которой он оказался ученым, впервые сумевшим заглянуть внутрь атома, состояла, в значительной мере, в том, что Резерфорд был человеком, хорошо понимавшим, что такое дискриминация, и это понимание сделало его одним из самых мягких руководителей, какие только встречаются на свете. Его громогласность была не более чем камуфляжем. Резерфорд умел воспитывать толковых помощников — одним из главных его экспериментов руководил молодой человек, в конечном итоге доведший до совершенства чрезвычайно полезный портативный детектор радиации, устройство которого было придумано самим Резерфордом: издающий громкие щелчки счетчик, коему обязан своей славой Ханс Гейгер.

Совершенное ими открытие описывается в современных школах так часто, что нам уже трудно представить себе, насколько неожиданным оно оказалось. Резерфорд обнаружил следующее: сплошные непроницаемые атомы на самом деле почти полностью пусты. Представьте себе, что метеор падает в Атлантический океан и вместо того, чтобы так в нем и остаться, ударившись, в конце концов, об океанское дно, с громовым ревом вылетает назад. Подумайте о том, как трудно преодолеть устоявшиеся представления и понять: единственное объяснение происшедшего состоит в том, что никакой воды под поверхностью Атлантического океана на самом-то деле нет. Напротив, — по аналогии с тем, что обнаружил Резерфорд, — поверхность океана это лишь тонкая пленка жидкости, а под ней, там, где, как мы всегда полагали, плещут глубинные волны, струятся течения и вообще находятся тонны воды, там… пусто.

Ничего, кроме пустого воздуха, там нет и, если бы в нем находилась телекамера, она показала бы нам, как метеор, пробив внешнюю пленку, падает в пустом пространстве. И только на самом дне океана находится некое мощное, чрезвычайно компактное устройство, которое способно схватить падающий метеор и швырнуть его назад, в открытое пространство. Примерно так же выглядит атом с его укрытым в самом центре ядром. Лишь вблизи внешней оболочки атома мечутся электроны, участвующие в обычных реакциях, таких как сгорание куска дерева в огне. Однако от центрального ядра атома, мерцающего в самой глубине совершенно пустого пространства, они далеки.

Если мы снова уподобим атомы шарикам, из которых состоит подшипник, то можно будет сказать следующее: Резерфорд обнаружил, что шарики эти почти полностью полые. Только в самой середке их кроется крошечная песчинка, именуемая ядром. Открытие неутешительное — оказывается, атомы состоят по преимуществу из пустоты! — однако само по себе оно ничуть не объясняет, какое отношение имеет к такому атому уравнение E=mc2. «Сплошные» электроны, образующие внешнюю оболочку атома, не имеют ни малейшего намерения избавляться от своего материального существования и обращаться в вырывающиеся наружу потоки энергии.

Стало совершенно ясно, что теперь ученым надлежит заняться именно ядрами. Атомы содержат изрядное количество электричества, и если половина его распределяется по орбитам этих самых электронов, другая втиснута в сверхплотное центральное ядро. Способа, который позволял бы удерживать столь большой заряд в столь малом объеме, никто не знал. И все же там, в ядре атома, присутствовало нечто, способное запихать в ядро весь этот заряд и удерживать его, не давая извернуться и выскочить наружу. Атом был складским хранилищем скрытой энергии, на существование которой указывало уравнение Эйнштейна. В нем находились положительно заряженные частицы, которые мы называем протонами, — однако выяснить какие-либо относящиеся к ним подробности не удавалось никому.

В конце концов, ассистент Резерфорда Джеймс Чедвик все же сумел получить картину более ясную, — это произошло в 1932 году, когда он открыл еще