19. Tanioka M, Yamada H, Doi M, Bando H, Yamaguchi Y, Nishigori C, et al. Molecular clocks in mouse skin. J Invest Dermatol. 2009;129:1225–31. https://pubmed.ncbi.nlm.nih.gov/19037239/
20. Mendoza J. Circadian clocks: setting time by food. J Neuroendocrinol. 2007;19:127–37. https://pubmed.ncbi.nlm.nih.gov/17214875/
21. Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci. 2013;119:155–90. https:// pubmed.ncbi.nlm.nih.gov/23899598/
22. Sardon Puig L. Circadian rhythms and mitochondria.
23. Wrede JE, Mengel-From J, Buchwald D, Vitiello MV, Bamshad M, Noonan C, et al. Mitochondrial DNA copy number in sleep duration discordant monozygotic twins. Sleep. 2015;38:1655–58. https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4576340/
24. Peek CB, Affinati AH, Ramsey KM, Kuo H-Y, Yu W, Sena LA, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science. 2013;342:1243417. https://pubmed.ncbi.nlm.nih.gov/24051248/
25. Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 2015;22:709–20. https://pubmed.ncbi.nlm.nih.gov/26365180/
26. Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A. 2016;113:E1673–82. https://pubmed.ncbi.nlm.nih.gov/26862173/
27. Kohsaka A, Das P, Hashimoto I, Nakao T, Deguchi Y, Gouraud SS, et al. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLoS One. 2014;9:e112811. https://pubmed.ncbi.nlm.nih.gov/25389966/
28. Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 2018;27:657–66.e5. https://pubmed.ncbi.nlm.nih.gov/29478834/
29. Peek. Circadian clock NAD.
30. Jacobi. Hepatic Bmal1 regulates.
31. Kohsaka. The circadian clock maintains cardiac function.
32. Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A. 2010;107:19090–5. https://pubmed.ncbi.nlm.nih.gov/20956306/
33. Rey G, Reddy AB. Protein acetylation links the circadian clock to mitochondrial function. Proc. Natl. Acad. Sci. U. S. A. 2013. p. 3210–1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587251/
34. Jacobi. Hepatic Bmal1 regulates.
35. Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U. The Mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol. 2014;5:289. https://pubmed.ncbi.nlm.nih.gov/25628599/
36. de Goede P, Wefers J, Brombacher EC, Schrauwen P, Kalsbeek A. Circadian rhythms in mitochondrial respiration. J Mol Endocrinol. 2018;60:R115–30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854864/
37. Gomes LC, Scorrano L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta. 2013;1833:205–12. https://pubmed.ncbi.nlm.nih.gov/22406072/
38. Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011;2011:326320. https://pubmed.ncbi.nlm.nih.gov/21629741/
39. Zhang H-M, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57:131–46. https://pubmed. ncbi.nlm.nih.gov/25060102/
40. Tan D-X, Hardeland R, Manchester LC, Poeggeler B, Lopez-Burillo S, Mayo JC, et al. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res. 2003;34:249–59. https://onlinelibrary.wiley.com/doi/ pdf/10.1034/j.1600-079X.2003.00037.x
41. Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42. https://pubmed.ncbi.nlm.nih.gov/17198536/
42. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9. https://pubmed.ncbi.nlm.nih.gov/14675124/
43. Sofic E, Rimpapa Z, Kundurovic Z, Sapcanin A, Tahirovic I, Rustembegovic A, et al. Antioxidant capacity of the neurohormone melatonin. J Neural Transm. 2005;112:349–58. https://pubmed.ncbi.nlm.nih.gov/ 15666035/
44. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci. 2017;74:3863–81. https://pubmed.ncbi.nlm.nih.gov/28864909/
45. Lowes DA, Webster NR, Murphy MP, Galley HF. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth. 2013;110:472–80. https://pubmed.ncbi.nlm.nih.gov/23381720/
46. Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan D-X, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol. 2012;361:12–23. https://pubmed.ncbi.nlm.nih.gov/22575351/
47. Reiter. Melatonin as a mitochondria-targeted antioxidant.
48. Tan. Mitochondria and chloroplasts as the original sites of melatonin synthesis.
49. Reiter RJ, Tan DX, Galano A. Melatonin: exceeding expectations. Physiology. 2014;29:325–33. https://pubmed.ncbi.nlm.nih.gov/25180262/
50. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–77. https:// pubmed.ncbi.nlm.nih.gov/24136970/
51. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99. https://pubmed.ncbi.nlm.nih.gov/25947369/
52. Glassford JAG. The neuroinflammatory etiopathology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front Physiol. 2017;8:88. https://pubmed.ncbi.nlm.nih.gov/28261110/
53. Weeke J, Gundersen HJ. Circadian and 30 minutes variations in serum TSH and thyroid hormones in normal subjects. Acta Endocrinol. 1978;89:659–72. https://pubmed.ncbi.nlm.nih.gov/716774/
54. Ikegami K, Refetoff S, Van Cauter E, Yoshimura T. Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol. 2019;15:590–600. https://pubmed.ncbi.nlm.nih.gov/31406343/
55. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–39. https://pubmed.ncbi.nlm.nih.gov/10543671/
56. Holl RW, Hartman ML, Veldhuis JD, Taylor WM, Thorner MO. Thirty-second sampling of plasma growth hormone in man: correlation with sleep stages. J Clin Endocrinol Metab. 1991;72:854–61. https://pubmed.ncbi.nlm.nih.gov/2005213/
57. Berwaerts J, Moorkens G, Abs R. Secretion of growth hormone in patients with chronic fatigue syndrome. Growth Horm IGF Res. 1998;8 Suppl B:127–29. https://pubmed.ncbi.nlm.nih.gov/10990147/
58. Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016;16:48. https://pubmed.ncbi.nlm.nih.gov/27557747/
59. Kumari M, Badrick E, Chandola T, Adam EK, Stafford M, Marmot MG, et al. Cortisol secretion and fatigue: associations in a community based cohort. Psychoneuroendocrinology. 2009;34:1476–85. https://pubmed.ncbi.nlm.nih.gov/19497676/
60. Abbruzzese EA, Klingmann A, Ehlert U. The influence of the chronotype on the awakening response of cortisol in the morning. Adv Soc Sci Res J. 2014;1:115–21. https://journals.scholarpublishing.org/index.php/ASSRJ/ article/view/519
61. Edwards S, Evans P, Hucklebridge F, Clow A. Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology. 2001;26:613–22. https://pubmed.ncbi.nlm.nih.gov/11403981/
62. Kudielka BM, Federenko IS, Hellhammer DH, Wüst S. Morningness and eveningness: the free cortisol rise after awakening in “early birds” and “night owls.” Biol Psychol. 2006;72:141–6. https://pubmed.ncbi.nlm.nih.gov/16236420/
63. Oginska H, Fafrowicz M, Golonka K, Marek T, Mojsa-Kaja J, Tucholska K. Chronotype, sleep loss, and diurnal pattern of salivary cortisol in a simulated daylong driving. Chronobiol Int. 2010;27:959–74. https://pubmed.ncbi.nlm.nih.gov/20636209/
64. Bozic J, Galic T, Supe-Domic D, Ivkovic N, Ticinovic Kurir T, Valic Z, et al. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients. Endocrine. 2016;53:730–39. https:// pubmed.ncbi.nlm.nih.gov/27000083/
65. Späth-Schwalbe E, Schöller T, Kern W, Fehm HL, Born J. Nocturnal adrenocorticotropin and cortisol secretion depends on sleep duration and decreases in association with spontaneous awakening in the morning. J Clin Endocrinol Metab. 1992;75:1431–35. https://pubmed.ncbi.nlm.nih. gov/1334495/
66. Leese G, Chattington P, Fraser W, Vora J, Edwards R, Williams G. Shortterm night-shift working mimics the pituitary-adrenocortical dysfunction in chronic fatigue syndrome. J Clin Endocrinol Metab. 1996;81:1867–70. https://scholar.google.com/scholar?q=J+Clin+Endocrinol+Metab.+1996%3B8 1:1867%E2%80%9370.&hl=en&as_sdt=0&as_vis=1&oi=scholart
67. Mirick DK, Bhatti P, Chen C, Nordt F, Stanczyk FZ, Davis S. Night shift work and levels of 6-sulfatoxymelatonin and cortisol in men. Cancer Epidemiol Biomarkers Prev. 2013;22:1079–87. https://pubmed.ncbi.nlm.nih.gov/23563887/
68. Almoosawi S, Vingeliene S, Gachon F, Voortman T, Palla L, Johnston JD, et al. Chronotype: implications for epidemiologic studies on chrono-nutrition and cardiometabolic health. Adv Nutr. 2019;10:30–42. https://pubmed.ncbi.nlm.nih.gov/30500869/