69. Kant AK, Graubard BI. 40-year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet. 2015;115:50–63. https://pubmed.ncbi.nlm.nih.gov/25088521/
70. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22:789– 98. https://pubmed.ncbi.nlm.nih.gov/26411343/
71. Queiroz J do N, Macedo RCO, Tinsley GM, Reischak-Oliveira A. Time-restricted eating and circadian rhythms: the biological clock is ticking. Crit Rev Food Sci Nutr. 2020;1–13. https://pubmed.ncbi.nlm.nih.gov/32662279/
72. Melkani GC, Panda S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J Physiol. 2017;595:3691–700. https://pubmed.ncbi.nlm.nih.gov/28295377/
73. St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135:e96–121. https://pubmed.ncbi.nlm.nih.gov/28137935/
74. Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr. 2019;39:291–315. https://pubmed.ncbi.nlm.nih.gov/31180809/
75. Adafer R, Messaadi W, Meddahi M, Patey A, Haderbache A, Bayen S, et al. Food timing, circadian rhythm and chrononutrition: a systematic review of time-restricted eating’s effects on human health. Nutrients. 2020;12. http:// dx.doi.org/10.3390/nu12123770
76. Lettieri-Barbato D, Cannata SM, Casagrande V, Ciriolo MR, Aquilano K. Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle. PLoS One. 2018;13:e0195912. https://pubmed.ncbi.nlm.nih.gov/29742122/
77. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–21.e3. https://pubmed.ncbi.nlm.nih.gov/29754952/
78. Kahleova H, Belinova L, Malinska H, Oliyarnyk O, Trnovska J, Skop V, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014;57:1552–60. https:// pubmed.ncbi.nlm.nih.gov/24838678/
79. Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14:290. https://pubmed.ncbi.nlm.nih.gov/27737674/
80. Tinsley GM, Moore ML, Graybeal AJ, Paoli A, Kim Y, Gonzales JU, et al. Time-restricted feeding plus resistance training in active females: a randomized trial. Am J Clin Nutr. 2019;110:628–40. https://pubmed.ncbi.nlm.nih.gov/31268131/
81. Gill S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cel Metab. 2015;22:789–98. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635036/
82. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330:1349–54. https://pubmed.ncbi.nlm.nih.gov/21127246/
83. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–61. https://pubmed.ncbi.nlm.nih.gov/11114885/
84. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291:490–93. https:// pubmed.ncbi.nlm.nih.gov/11161204/
85. Bonham MP, Bonnell EK, Huggins CE. Energy intake of shift workers compared to fixed day workers: A systematic review and meta-analysis. Chronobiol Int. 2016;33:1086–1100. https://pubmed.ncbi.nlm.nih.gov/27303804/
86. Cayanan EA, Eyre NAB, Lao V, Comas M, Hoyos CM, Marshall NS, et al. Is 24-hour energy intake greater during night shift compared to non-night shift patterns? A systematic review. Chronobiol Int. 2019;36:1599–1612. https:// pubmed.ncbi.nlm.nih.gov/31571507/
87. Zhang Y, Papantoniou K. Night shift work and its carcinogenicity. Lancet Oncol. 2019. e550. https://pubmed.ncbi.nlm.nih.gov/31578992/
88. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60. https:// pubmed.ncbi.nlm.nih.gov/22608008/
89. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J. 2012;26:3493–502. https://pubmed.ncbi.nlm.nih.gov/22593546/
90. Ye Y, Xu H, Xie Z, Wang L, Sun Y, Yang H, et al. Time-restricted feeding reduces the detrimental effects of a high-fat diet, possibly by modulating the circadian rhythm of hepatic lipid metabolism and gut microbiota. Front Nutr. 2020;7:596285. https://pubmed.ncbi.nlm.nih.gov/33425971/
91. Moran-Ramos S, Baez-Ruiz A, Buijs RM, Escobar C. When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev. 2016;29:180–93. https://pubmed.ncbi.nlm.nih.gov/27364352/
92. Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity. 2019;27:1244–54. https:// pubmed.ncbi.nlm.nih.gov/31339000/
93. Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11. http://dx.doi.org/10.3390/nu11061234.
94. Adib-Hajbaghery M, Mousavi SN. The effects of chamomile extract on sleep quality among elderly people: A clinical trial. Complement Ther Med. 2017;35:109–14. https://pubmed.ncbi.nlm.nih.gov/29154054/
95. Thomas EA, Higgins J, Bessesen DH, McNair B, Cornier M-A. Usual breakfast eating habits affect response to breakfast skipping in overweight women. Obesity. 2015;23:750–59. https://pubmed.ncbi.nlm.nih.gov/25755093/
96. St-Onge M-P, Mikic A, Pietrolungo CE. Effects of diet on sleep quality. Adv Nutr. 2016;7:938–49. https://pubmed.ncbi.nlm.nih.gov/27633109/
97. Ekman AC, Leppäluoto J, Huttunen P, Aranko K, Vakkuri O. Ethanol inhibits melatonin secretion in healthy volunteers in a dose-dependent randomized double blind cross-over study. J Clin Endocrinol Metab. 1993;77:780–83. https://pubmed.ncbi.nlm.nih.gov/8370699/
98. Röjdmark S, Wikner J, Adner N, Andersson DE, Wetterberg L. Inhibition of melatonin secretion by ethanol in man. Metabolism. 1993;42:1047–51. https://pubmed.ncbi.nlm.nih.gov/8345809/
99. Rupp TL, Acebo C, Carskadon MA. Evening alcohol suppresses salivary melatonin in young adults. Chronobiol Int. 2007;24:463–70. https://pubmed.ncbi.nlm.nih.gov/17612945/100. Ebrahim IO, Shapiro CM, Williams AJ, Fenwick PB. Alcohol and sleep I: effects on normal sleep. Alcohol Clin Exp Res. 2013;37:539–49. https:// pubmed.ncbi.nlm.nih.gov/23347102/
101. Ribeiro JA, Sebastião AM. Caffeine and adenosine. J Alzheimers Dis. 2010;20 Suppl 1:S3–15. https://pubmed.ncbi.nlm.nih.gov/20164566/
102. Childs E, de Wit H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology. 2006;185:514–23. https://pubmed.ncbi.nlm.nih.gov/16541243/
103. Tarnopolsky M, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol. 2000;89:1719–24. https://pubmed.ncbi.nlm.nih.gov/11053318/
104. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102:127–32. https://pubmed.ncbi.nlm.nih.gov/17851681/
105. Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93:1227–34. https:// pubmed.ncbi.nlm.nih.gov/12235019/
106. Bell DG, McLellan TM. Effect of repeated caffeine ingestion on repeated exhaustive exercise endurance. Med Sci Sports Exerc. 2003;35:1348–54. https://pubmed.ncbi.nlm.nih.gov/12900689/
107. O’Callaghan F, Muurlink O, Reid N. Effects of caffeine on sleep quality and daytime functioning. Risk Manag Healthc Policy. 2018;11:263–71. https:// pubmed.ncbi.nlm.nih.gov/30573997/
108. Bchir F, Dogui M, Ben Fradj R, Arnaud MJ, Saguem S. Differences in pharmacokinetic and electroencephalographic responses to caffeine in sleep-sensitive and non-sensitive subjects. C R Biol. 2006;329:512–19. https://pubmed.ncbi.nlm.nih.gov/16797457/
109. Robertson D, Wade D, Workman R, Woosley RL, Oates JA. Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest. 1981;67:1111–17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC370671/
110. Marangos PJ, Boulenger JP, Patel J. Effects of chronic caffeine on brain adenosine receptors: regional and ontogenetic studies. Life Sci. 1984;34:899–907. https://pubmed.ncbi.nlm.nih.gov/6321875/
Глава 3
1. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age. 2007–2008 to 2015–2016. JAMA. 2018;319:1723–25. https://pubmed.ncbi.nlm.nih.gov/29570750/
2. The prevalence of overfat adults and children in the US. Front Public Health. 2017;5:290. https://pubmed.ncbi.nlm.nih.gov/29164096/
3. Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12:123–37. https://pubmed.ncbi.nlm.nih.gov/3050629/