4. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27. https://pubmed.ncbi.nlm.nih.gov/28604169/
5. Dobbs R, Sawers C, Thompson F, Manyika J, Woetzel J, Child P, et al. Overcoming obesity: an initial economic analysis. McKinsey Global Institute; 2014 Nov. https://www.mckinsey.com/~/media/McKinsey/Business%20 Functions/Economic%20Studies%20TEMP/Our%20Insights/How%20the%20 world%20could%20better%20fight%20obesity/MGI_Overcoming_obesity _Full_report.ashx.
6. Biener A, Cawley J, Meyerhoefer C. The high and rising costs of obesity to the US health care system. J Gen Intern Med. 2017;32:6–8. https://pubmed.ncbi.nlm.nih.gov/28271429/
7. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. 2009;28:w822–31. https://pubmed.ncbi.nlm.nih.gov/19635784/
8. Ul-Haq Z, Mackay DF, Fenwick E, Pell JP. Meta-analysis of the association between body mass index and health-related quality of life among adults, assessed by the SF-36. Obesity. 2013;21:E322–27. https://pubmed.ncbi.nlm.nih.gov/23592685/
9. Galland-Decker C, Marques-Vidal P, Vollenweider P. Prevalence and factors associated with fatigue in the Lausanne middle-aged population: a population-based, cross-sectional survey. BMJ Open. 2019;9:e027070. https:// bmjopen.bmj.com/content/bmjopen/9/8/e027070.full.pdf
10. Katz DA, McHorney CA, Atkinson RL. Impact of obesity on health-related quality of life in patients with chronic illness. J Gen Intern Med. 2000;15:789–96. https://pubmed.ncbi.nlm.nih.gov/11119171/
11. Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The high costs of low-grade inflammation: persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. Front Behav Neurosci. 2018;12:78. https://pubmed.ncbi.nlm.nih.gov/29755330/
12. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30:297–306. https://pubmed.ncbi.nlm.nih.gov/23468190/
13. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130:226–38. https:// pubmed.ncbi.nlm.nih.gov/21334376/
14. Karshikoff B, Sundelin T, Lasselin J. Role of inflammation in human fatigue: relevance of multidimensional assessments and potential neuronal mechanisms. Front Immunol. 2017;8:21. https://pubmed.ncbi.nlm.nih.gov/28163706/
15. Pollmächer T, Haack M, Schuld A, Reichenberg A, Yirmiya R. Low levels of circulating inflammatory cytokines – do they affect human brain functions? Brain Behav Immun. 2002;16:525–32. https://pubmed.ncbi.nlm.nih.gov/12401466/
16. Lasselin J, Capuron L. Chronic low-grade inflammation in metabolic disorders: relevance for behavioral symptoms. Neuroimmunomodulation. 2014;21:95–101. https://pubmed.ncbi.nlm.nih.gov/24557041/
17. Hart. Biological basis of the behavior of sick animals.
18. van Horssen J, van Schaik P, Witte M. Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett. 2019;710:132931. https://pubmed.ncbi.nlm.nih.gov/28668382/
19. Dela Cruz CS, Kang M-J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 2018;41:37–44. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5988941/
20. Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis. 2014;29:19–36. https://pubmed.ncbi.nlm.nih.gov/24557875/
21. Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184:4062–68. https://pubmed.ncbi.nlm.nih.gov/20368286/
22. Wang H, Ye J. Regulation of energy balance by inflammation: common theme in physiology and pathology. Rev Endocr Metab Disord. 2015;16:47–54. https://pubmed.ncbi.nlm.nih.gov/25526866/
23. Lacourt. The high costs of low-grade inflammation.
24. Vgontzas AN, Bixler EO, Chrousos GP, Pejovic S. Obesity and sleep disturbances: meaningful sub-typing of obesity. Arch Physiol Biochem. 2008;114:224–36. https://www.researchgate.net/publication/23407878_Obesity_and_sleep_disturbances_Meaningful_sub-typing_of_obesity
25. Mullington JM, Simpson NS, Meier-Ewert HK, Haack M. Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab. 2010;24:775–84. https://pubmed.ncbi.nlm.nih.gov/21112025/
26. Kizaki T, Sato S, Shirato K, Sakurai T, Ogasawara J, Izawa T, et al. Effect of circadian rhythm on clinical and pathophysiological conditions and inflammation. Crit Rev Immunol. 2015;35:261–75. https://pubmed.ncbi.nlm.nih.gov/26757391/
27. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju S, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86. https://pubmed.ncbi.nlm.nih.gov/27423262/
28. Flegal KM, Shepherd JA, Looker AC, Graubard BI, Borrud LG, Ogden CL, et al. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr. 2009;89:500–508. https://pubmed.ncbi.nlm.nih.gov/19116329/
29. Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal muscle regulates m\Metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17:789–96. https://pubmed.ncbi.nlm.nih.gov/27324808/
30. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82. https://pubmed.ncbi.nlm.nih.gov/16960159/
31. Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J Am Med Dir Assoc. 2016;17:675–77. https://pubmed.ncbi.nlm.nih.gov/27470918/
32. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96. https://pubmed.ncbi.nlm.nih.gov/12028177/
33. Patino-Hernandez D, David-Pardo DG, Borda MG, Pérez-Zepeda MU, Cano-Gutiérrez C. Association of fatigue with sarcopenia and its elements: a secondary analysis of SABE-Bogotá. Gerontol Geriatr Med. 2017;3:2333721417703734. https://pubmed.ncbi.nlm.nih.gov/28474000/
34. Neefjes ECW, van den Hurk RM, Blauwhoff-Buskermolen S, van der Vorst MJDL, Becker-Commissaris A, de van der Schueren MAE, et al. Muscle mass as a target to reduce fatigue in patients with advanced cancer. J Cachexia Sarcopenia Muscle. 2017;8:623–29. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5566642/
35. Blissmer B, Riebe D, Dye G, Ruggiero L, Greene G, Caldwell M. Health- related quality of life following a clinical weight loss intervention among overweight and obese adults: intervention and 24 month follow-up effects. Health Qual Life Outcomes. 2006;4:43. https://pubmed.ncbi.nlm.nih.gov/16846509/
36. Williamson DA, Rejeski J, Lang W, Van Dorsten B, Fabricatore AN, Toledo K, et al. Impact of a weight management program on health-related quality of life in overweight adults with type 2 diabetes. Arch Intern Med. 2009;169:163–71. https://pubmed.ncbi.nlm.nih.gov/19171813/
37. Sarwer DB, Moore RH, Diewald LK, Chittams J, Berkowitz RI, Vetter M, et al. The impact of a primary care-based weight loss intervention on the quality of life. Int J Obes. 2013;37 Suppl 1:S25–30. https://pubmed.ncbi.nlm.nih.gov/23921778/
38. Pearl RL, Wadden TA, Tronieri JS, Berkowitz RI, Chao AM, Alamuddin N, et al. Short- and long-term changes in health-related quality of life with weight loss: results from a randomized controlled trial. Obesity. 2018;26:985–91. https://pubmed.ncbi.nlm.nih.gov/29676530/
39. 37. Kolotkin RL, Norquist JM, Crosby RD, Suryawanshi S, Teixeira PJ, Heymsfield SB, et al. One-year health-related quality of life outcomes in weight loss trial participants: comparison of three measures. Health Qual Life Outcomes. 2009;7:53. https://pubmed.ncbi.nlm.nih.gov/19505338/
40. Kaukua J, Pekkarinen T, Sane T, Mustajoki P. Health-related quality of life in WHO class II–III obese men losing weight with very-low-energy diet and behaviour modification: a randomised clinical trial. Int J Obes Relat Metab Disord. 2002;26:487–95. https://pubmed.ncbi.nlm.nih.gov/12075575/
41. Franz MJ, VanWormer JJ, Crain AL, Boucher JL, Histon T, Caplan W, et al. Weight-loss outcomes: a systematic review and meta-analysis of weightloss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107:1755–67. https://pubmed.ncbi.nlm.nih.gov/17904936/
42. Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. Brain responses to high-protein diets. Adv Nutr. 2012;3:322–29. https://academic.oup.com/ advances/article/3/3/322/4591532
43. Tappy L. Thermic effect of food and sympathetic nervous system activity in humans. Reprod Nutr Dev. 1996;36:391–97. https://pubmed.ncbi.nlm.nih.gov/8878356/
44. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD. Effects of energy-restricted high-protein, low-fat compared with standard-protein, lowfat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96:1281–98. https://pubmed.ncbi.nlm.nih.gov/23097268/
45. Kim JE, O’Connor LE, Sands LP, Slebodnik MB, Campbell WW. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. Nutr Rev. 2016;74:210–24. https://pubmed.ncbi.nlm.nih.gov/26883880/