Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 17 из 38

46. Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R, Heels-Ansdell D, et al. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr. 2012;66:780–88. https://pubmed.ncbi.nlm.nih.gov/22510792/

47. Jдger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20. https://pubmed.ncbi.nlm.nih.gov/28642676/

48. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48:543–68. https://pubmed.ncbi.nlm.nih.gov/26891166/

49. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52:376–84. https://pubmed.ncbi.nlm.nih.gov/28698222/

50. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015;70:57–62. https://pubmed.ncbi.nlm.nih.gov/25056502/

51. Burd NA, Gorissen SH, van Loon LJC. Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev. 2013;41:169–73. https://pubmed.ncbi.nlm.nih.gov/23558692/

52. Rogerson D. Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr. 2017;14:36. https://pubmed.ncbi.nlm.nih.gov/28924423/

53. Moughan PJ, Gilani S, Rutherfurd SM, Tome D. True ileal amino acid digestibility coefficients for application in the calculation of Digestible Indispensable Amino Acid Score (DIAAS) in human nutrition. FAO; 2012 Feb. http://www.fao.org/ag/humannutrition/36216-04a2f02ec02eafd4f457dd2c9851b4c45.pdf

54. Sarwar Gilani G, Wu Xiao C, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. 2012;108 Suppl 2:S315–32. https:// pubmed.ncbi.nlm.nih.gov/23107545/

55. van Vliet S, Burd NA, van Loon LJC. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J Nutr. 2015;145:1981–91. https://pubmed.ncbi.nlm.nih.gov/26224750/

56. Rolls BJ. The relationship between dietary energy density and energy intake. Physiol Behav. 2009;97:609–15. https://pubmed.ncbi.nlm.nih.gov/19303887/

57. Rolls BJ. Dietary energy density: Applying behavioural science to weight management. Nutr Bull. 2017;42:246–53. https://pubmed.ncbi.nlm.nih.gov/29151813/

58. Roe LS, Meengs JS, Rolls BJ. Salad and satiety. The effect of timing of salad consumption on meal energy intake. Appetite. 2012;58:242–48. https:// pubmed.ncbi.nlm.nih.gov/22008705/

59. Ello-Martin JA, Roe LS, Ledikwe JH, Beach AM, Rolls BJ. Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets. Am J Clin Nutr. 2007;85:1465–77. https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2018610/

60. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity. 2011;19:1109–17. https://pubmed.ncbi.nlm.nih.gov/21331068/

61. Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res. 2014;265:132–41. https://pubmed.ncbi.nlm.nih.gov/24583192/

62. Hashim SA, Van Itallie TB. Studies in normal and obese subjects with a monitored food dispensing device. Ann N Y Acad Sci. 1965;131:654–61. https:// pubmed.ncbi.nlm.nih.gov/5216999/

63. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30:67–77.e3. https://pubmed.ncbi.nlm.nih.gov/31105044/

64. Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591:2319–31. https://pubmed.ncbi.nlm.nih.gov/23459753/

65. Ostendorf DM, Caldwell AE, Creasy SA, Pan Z, Lyden K, Bergouignan A, et al. Physical activity energy expenditure and total daily energy expenditure in successful weight loss maintainers. Obesity. 2019;27:496–504. https:// pubmed.ncbi.nlm.nih.gov/30801984/

66. Poehlman ET, Melby CL, Badylak SF. Resting metabolic rate and postprandial thermogenesis in highly trained and untrained males. Am J Clin Nutr. 1988;47:793–98. https://pubmed.ncbi.nlm.nih.gov/3284328/

67. Burke CM, Bullough RC, Melby CL. Resting metabolic rate and postprandial thermogenesis by level of aerobic fitness in young women. Eur J Clin Nutr. 1993;47:575–85. https://pubmed.ncbi.nlm.nih.gov/8404794/

68. Bell C, Day DS, Jones PP, Christou DD, Petitt DS, Osterberg K, et al. High energy flux mediates the tonically augmented beta-adrenergic support of resting metabolic rate in habitually exercising older adults. J Clin Endocrinol Metab. 2004;89:3573–78. https://pubmed.ncbi.nlm.nih.gov/15240648/

69. Bullough RC, Gillette CA, Harris MA, Melby CL. Interaction of acute changes in exercise energy expenditure and energy intake on resting metabolic rate. Am J Clin Nutr. 1995;61:473–81. https://pubmed.ncbi.nlm.nih.gov/7872209/

70. Paris HL, Foright RM, Werth KA, Larson LC, Beals JW, Cox-York K, et al. Increasing energy flux to decrease the biological drive toward weight regain after weight loss – a proof-of-concept pilot study. Clin Nutr ESPEN. 2016;11:e12–20. https://pubmed.ncbi.nlm.nih.gov/28531421/

71. Santos HG, Chiavegato LD, Valentim DP, Padula RS. Effectiveness of a progressive resistance exercise program for industrial workers during breaks on perceived fatigue control: a cluster randomized controlled trial. BMC Public Health. 2020;20:849. https://bmcpublichealth.biomedcentral.com/ articles/10.1186/s12889-020-08994-x

72. Sundstrup E, Jakobsen MD, Brandt M, Jay K, Aagaard P, Andersen LL. Strength training improves fatigue resistance and self-rated health in workers with chronic pain: a randomized controlled trial. Biomed Res Int. 2016;2016:4137918. https://pubmed.ncbi.nlm.nih.gov/27830144/

73. Katz DL, Meller S. Can we say what diet is best for health? Annu Rev Public Health. 2014;35:83–103. https://pubmed.ncbi.nlm.nih.gov/24641555/


Глава 4

1. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol Hepatol. 2015;28:203–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367209/

2. Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, et al. Gut-liver axis: how do gut bacteria influence the liver? Med Sci (Basel). 2018;6. http://dx.doi.org/10.3390/medsci6030079

3. Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ. Gut-muscle axis exists and may affect skeletal muscle adaptation to training. Nutrients. 2020;12. http://dx.doi.org/10.3390/nu12051451

4. Konrad D, Wueest S. The gut-adipose-liver axis in the metabolic syndrome. Physiology. 2014;29:304–13. https://pubmed.ncbi.nlm.nih.gov/25180260/

5. Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest. 2019;129:3018–28. https:// pubmed.ncbi.nlm.nih.gov/31305265/

6. Gracey E, Vereecke L, McGovern D, Fröhling M, Schett G, Danese S, et al. Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol. 2020;16:415–33. https://pubmed.ncbi.nlm.nih.gov/32661321/

7. Barcik W, Boutin RCT, Sokolowska M, Brett Finlay B. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020; 52: 241–55. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC7128389/

8. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. https:// pubmed.ncbi.nlm.nih.gov/25651997/

9. Mitev K, Taleski V. Association between the gut microbiota and obesity. Open Access Maced J Med Sci. 2019;7:2050–56. https://pubmed.ncbi.nlm.nih.gov/31406553/

10. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–8. https://pubmed.ncbi.nlm.nih.gov/30366260/

11. Fernandes R, Viana SD, Nunes S, Reis F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1876–97. https://pubmed.ncbi.nlm.nih.gov/30287404/

12. Lau K, Srivatsav V, Rizwan A, Nashed A, Liu R, Shen R, et al. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients. 2017;9. http://dx.doi.org/10.3390/nu9080859

13. Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018;120:149–63. https://pubmed.ncbi.nlm.nih.gov/30114473/

14. Haran JP, McCormick BA. Aging, frailty, and the microbiome: how dysbiosis influences human aging and disease. G Gastroenterology. 2021;160:507–23. https://pubmed.ncbi.nlm.nih.gov/33307030/

15. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164:337–40. https:// pubmed.ncbi.nlm.nih.gov/26824647/