61. Kalala G, Kambashi B, Everaert N, Beckers Y, Richel A, Pachikian B, et al. Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. Int J Food Sci Nutr. 2018;69:682–89. https://pubmed.ncbi.nlm.nih.gov/29252035/
62. Kalala. Characterization of fructans and dietary fibre profiles.
63. Shen D, Bai H, Li Z, Yu Y, Zhang H, Chen L. Positive effects of resistant starch supplementation on bowel function in healthy adults: a systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2017;68:149–57. https://pubmed.ncbi.nlm.nih.gov/27593182/
64. Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, et al. Resistant starch as prebiotic: a review. Starke. Wiley; 2011;63:406–15. https://onlinelibrary.wiley.com/doi/full/10.1002/ star.201000099
65. Montroy J, Berjawi R, Lalu MM, Podolsky E, Peixoto C, Sahin L, et al. The effects of resistant starches on inflammatory bowel disease in preclinical and clinical settings: a systematic review and meta-analysis. BMC Gastroenterol. 2020;20:372. https://bmcgastroenterol.biomedcentral.com/articles/10.1186/ s12876-020-01516-4
66. Patterson MA, Maiya M, Stewart ML. Resistant starch content in foods commonly consumed in the United States: a narrative review. J Acad Nutr Diet. 2020;120:230–44. https://pubmed.ncbi.nlm.nih.gov/32040399/
67. Falcomer AL, Riquette RFR, de Lima BR, Ginani VC, Zandonadi RP. Health benefits of green banana consumption: a systematic review. Nutrients. 2019;11. http://dx.doi.org/10.3390/nu11061222
68. Hald S, Schioldan AG, Moore ME, Dige A, Lærke HN, Agnholt J, et al. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS One. 2016;11:e0159223. https://pubmed.ncbi.nlm.nih.gov/27434092/
69. Alfa MJ, Strang D, Tappia PS, Graham M, Van Domselaar G, Forbes JD, et al. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin Nutr. 2018;37:797–807. https://pubmed.ncbi.nlm.nih.gov/28410921/
70. Zhang L, Ouyang Y, Li H, Shen L, Ni Y, Fang Q, et al. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: a randomized crossover trial. Sci Rep. 2019;9:4736. https://www.nature.com/articles/s41598-018-38216-9
71. Raatz SK, Idso L, Johnson LK, Jackson MI, Combs GF Jr. Resistant starch analysis of commonly consumed potatoes: content varies by cooking method and service temperature but not by variety. Food Chem. 2016;208:297–300. https://pubmed.ncbi.nlm.nih.gov/27132853
72. Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, et al. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep. 2016;6:28797. https:// www.nature.com/articles/srep28797
73. Hasjim J, Ai Y, Jane J-L. Novel applications of amylose-lipid complex as resistant starch type 5. In Resistant Starch. (Hoboken, NJ: Wiley, 2013) 79–94.
74. ACS. New low-calorie rice could help cut rising obesity rates. American Chemistry Society. 2015. https://www.acs.org/content/acs/en/pressroom/ newsreleases/2015/march/new-low-calorie-rice-could-help-cut-rising-obesity – rates.html
75. Derrien M, van Hylckama Vlieg JET. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354– 66. https://pubmed.ncbi.nlm.nih.gov/25840765/
76. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94–102. https://pubmed.ncbi.nlm.nih.gov/27998788/
77. Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R. Biodiversity of intestinal lactic acid bacteria in the healthy population. Adv Exp Med Biol. 2016;932:1–64. https://pubmed.ncbi.nlm.nih.gov/27167411/
78. McFarland LV. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open. 2014;4:e005047. https://pubmed.ncbi.nlm.nih.gov/25157183/
79. Magge S, Lembo A. Low-FODMAP diet for treatment of irritable bowel syndrome. Gastroenterol Hepatol. 2012;8:739–45. https://pubmed.ncbi.nlm.nih.gov/24672410/
80. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5
Глава 5
1. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag. 2017;20:6–12. https://pubmed.ncbi.nlm.nih.gov/27124621/
2. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of causespecific death. N Engl J Med. 2011;364:829–41. https://www.nejm.org/doi/ full/10.1056/nejmoa1008862
3. American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41:917–28. https://care.diabetesjournals.org/ content/41/5/917
4. Ibid.
5. Einarson TR, Machado M, Henk Hemels ME. Blood glucose and subsequent cardiovascular disease: update of a meta-analysis. Curr Med Res Opin. 2011;27:2155–63. https://pubmed.ncbi.nlm.nih.gov/21973198/
6. Færch K, Alssema M, Mela DJ, Borg R, Vistisen D. Relative contributions of preprandial and postprandial glucose exposures, glycemic variability, and non-glycemic factors to HbA 1c in individuals with and without diabetes. Nutr Diabetes. 2018;8:38. https://www.nature.com/articles/ s41387-018-0047-8
7. Suh S, Kim JH. Glycemic variability: how do we measure it and why is it important? Diabetes Metab J. 2015;39:273–82. https://pubmed.ncbi.nlm.nih.gov/26301188/
8. Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol. 2020;19:102. https://pubmed.ncbi.nlm.nih.gov/32622354/
9. Reno CM, Skinner A, Bayles J, Chen YS, Daphna-Iken D, Fisher SJ. Severe hypoglycemia-induced sudden death is mediated by both cardiac arrhythmias and seizures. Am J Physiol Endocrinol Metab. 2018;315:E240– 49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139495/
10. Simpson EJ, Holdsworth M, Macdonald IA. Prevalence of self-reported symptoms attributed to hypoglycaemia within a general female population of the UK. J Psychosom Res. 2006;60:403–6. https://pubmed.ncbi.nlm.nih.gov/16581365/
11. Alwafi H, Alsharif AA, Wei L, Langan D, Naser AY, Mongkhon P, et al. Incidence and prevalence of hypoglycaemia in type 1 and type 2 diabetes individuals: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2020;170:108522. https://pubmed.ncbi.nlm.nih.gov/33096187/
12. Edridge CL, Dunkley AJ, Bodicoat DH, Rose TC, Gray LJ, Davies MJ, et al. Prevalence and incidence of hypoglycaemia in 532,542 people with type 2 diabetes on oral therapies and insulin: a systematic review and meta-analysis of population based studies. PLoS One. 2015;10:e0126427. https://pubmed.ncbi.nlm.nih.gov/26061690/
13. Altuntaş Y. Postprandial reactive hypoglycemia. Sisli Etfal Hastan Tip Bul. 2019;53:215–20. https://pubmed.ncbi.nlm.nih.gov/32377086/
14. Longkumer C, Nath CK, Barman B, Ruram AA, Visi V, Yasir MD, et al. Idiopathic post prandial glucose lowering, a whistle blower for subclinical hypothyroidism and insulin resistance. A cross-sectional study in Tertiary Care Centre of northeast India. J Family Med Prim Care. 2020;9:4637–40. https://journals.lww.com/jfmpc/pages/default.aspx
15. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–97. https://pubmed.ncbi.nlm.nih.gov/23968694/
16. Charles MA, Hofeldt F, Shackelford A, Waldeck N, Dodson LE Jr, Bunker D, et al. Comparison of oral glucose tolerance tests and mixed meals in patients with apparent idiopathic postabsorptive hypoglycemia: absence of hypoglycemia after meals. Diabetes. 1981;30:465–70. https://pubmed.ncbi.nlm.nih.gov/7227659/
17. Chalew SA, McLaughlin JV, Mersey JH, Adams AJ, Cornblath M, Kowarski AA. The use of the plasma epinephrine response in the diagnosis of idiopathic postprandial syndrome. JAMA. 1984;251:612–15. https:// jamanetwork.com/journals/jama/article-abstract/391267
18. Cardoso S, Santos MS, Seiça R, Moreira PI. Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/ or insulin-induced hypoglycemia. Biochim Biophys Acta. 2010;1802:942–51. https://hal.archives-ouvertes.fr/hal-00623292/document
19. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J-P, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–87. https://pubmed.ncbi.nlm.nih.gov/16609090/
20. Saisho Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci. 2014;15:18381–406. https:// pubmed.ncbi.nlm.nih.gov/25314300/
21. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20. https://pubmed.ncbi.nlm.nih.gov/11742414/
22. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev. 2006;22:198–203. https://pubmed.ncbi.nlm.nih.gov/16453381/
23. Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis. 2005;183:259–67. https://pubmed.ncbi.nlm.nih.gov/16285992/