Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 20 из 38

24. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–72. https://pubmed.ncbi.nlm.nih.gov/12379575/

25. Watt C, Sanchez-Rangel E, Hwang JJ. Glycemic variability and CNS inflammation: reviewing the connection. Nutrients. 2020;12. http://dx.doi.org/10.3390/nu12123906

26. Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol. 2015;213:7–18. https://pubmed.ncbi.nlm.nih.gov/25131833/

27. Drivsholm T, de Fine Olivarius N, Nielsen ABS, Siersma V. Symptoms, signs and complications in newly diagnosed type 2 diabetic patients, and their relationship to glycaemia, blood pressure and weight. Diabetologia. 2005;48:210–14. https://pubmed.ncbi.nlm.nih.gov/15650820/

28. Kaikini AA, Kanchan DM, Nerurkar UN, Sathaye S. Targeting mitochondrial dysfunction for the treatment of diabetic complications: pharmacological interventions through natural products. Pharmacogn Rev. 2017;11:128–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628518/

29. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12:537–77. https://pubmed.ncbi.nlm.nih.gov/19650713/

30. Fritschi C, Quinn L. Fatigue in patients with diabetes: a review. J Psychosom Res. 2010;69:33–41. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2905388/

31. Kalra S, Sahay R. Diabetes fatigue syndrome. Diabetes Ther. 2018;9:1421–29. https://pubmed.ncbi.nlm.nih.gov/29869049/

32. Taylor R, Holman RR. Normal weight individuals who develop type 2 diabetes: the personal fat threshold. Clin Sci. 2015;128:405–10. https:// pubmed.ncbi.nlm.nih.gov/25515001/

33. Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev. 2018;19:406–20. https://pubmed.ncbi.nlm.nih.gov/29243339/

34. Lafontan M. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 2014;40:16–28. https://pubmed.ncbi.nlm.nih.gov/24139247/

35. Haider N, Larose L. Harnessing adipogenesis to prevent obesity. Adipocyte. 2019;8:98–104. https://pubmed.ncbi.nlm.nih.gov/30848691/

36. Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: a necessary but harmful strategy. Int J Mol Sci. 2019;20. http://dx.doi.org/10.3390/ijms20153657

37. Kim JI, Huh JY, Sohn JH, Choe SS, Lee YS, Lim CY, et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol Cell Biol. 2015;35:1686–99. https://pubmed.ncbi.nlm.nih.gov/25733684/

38. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol. 2018;9:1–58. https://pubmed.ncbi.nlm.nih.gov/30549014/

39. Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia. 2002;45:1201–10. https://pubmed.ncbi.nlm.nih.gov/12242452/

40. Taylor R. Calorie restriction for long-term remission of type 2 diabetes. Clin Med. 2019;19:37–42. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6399621/

41. Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 2019;7:726–36. https:// pubmed.ncbi.nlm.nih.gov/31097391/

42. Taylor R. Calorie restriction and reversal of type 2 diabetes. Expert Rev Endocrinol Metab. 2016;11:521–28. https://pubmed.ncbi.nlm.nih.gov/ 30058916/

43. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54:2506–14. https://pubmed.ncbi.nlm.nih.gov/21656330/

44. Steven S, Hollingsworth KG, Al-Mrabeh A, Avery L, Aribisala B, Caslake M, et al. Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care. 2016;39:808–15. https://pubmed.ncbi.nlm.nih.gov/27002059/

45. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391:541–51. https://pubmed.ncbi.nlm.nih.gov/29221645/

46. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 2018;28:547–56.e3. https://pubmed.ncbi.nlm.nih.gov/30078554

47. DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Heart. 2019;6:e001028. https://pubmed.ncbi.nlm.nih.gov/31218007/

48. Cheng C-W, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fastingmimicking diet promotes ngn3-driven β-cell regeneration to reverse diabetes. Cell. 2017;168:775–88.e12. https://pubmed.ncbi.nlm.nih.gov/28235195/

49. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;139:239–52. https://pubmed.ncbi.nlm.nih.gov/29522789/

50. Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T, et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. 2021;372:m4743. https://pubmed.ncbi.nlm.nih.gov/33441384/

51. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41:2669–701. https://pubmed.ncbi.nlm.nih.gov/30291106/

52. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42:731–54. https://pubmed.ncbi.nlm.nih.gov/31000505/

53. Hutchison AT, Wittert GA, Heilbronn LK. Matching meals to body clocks— impact on weight and glucose metabolism. Nutrients. 2017;9. http://dx.doi.org/10.3390/nu9030222

54. Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev. 2016;37:584–608. https://pubmed.ncbi.nlm.nih.gov/27763782/

55. Kurose T, Yabe D, Inagaki N. Circadian rhythms and diabetes. J Diabetes Investig. 2011;2:176–77. https://pubmed.ncbi.nlm.nih.gov/24843479/

56. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627–31. https://pubmed.ncbi.nlm.nih.gov/20562852/

57. Leproult R, Holmbäck U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63:1860–69. https://pubmed.ncbi.nlm.nih.gov/24458353/

58. Koren D, O’Sullivan KL, Mokhlesi B. Metabolic and glycemic sequelae of sleep disturbances in children and adults. Curr Diab Rep. 2015;15:562. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467532/

59. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med Rev. 2016;30:11–24. https:// pubmed.ncbi.nlm.nih.gov/26687279/

60. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11–27. https://pubmed.ncbi.nlm.nih.gov/29195759/

61. Jarrett RJ, Baker IA, Keen H, Oakley NW. Diurnal variation in oral glucose tolerance: blood sugar and plasma insulin levels morning, afternoon, and evening. Br Med J. 1972;1:199–201. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1789199/

62. Grabner W, Matzkies F, Prestele H, Rose A, Daniel U, Phillip J, et al. [Diurnal variation of glucose tolerance and insulin secretion in man (author’s transl)]. Klin Wochenschr. 1975;53:773–78. https://pubmed.ncbi.nlm.nih.gov/ 1165623/

63. Van Cauter E, Shapiro ET, Tillil H, Polonsky KS. Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. Am J Physiol. 1992;262:E467–75. https://pubmed.ncbi.nlm.nih.gov/1566835/

64. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early timerestricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–21.e3. https://pubmed.ncbi.nlm.nih.gov/29754952/

65. Kahleova H, Belinova L, Malinska H, Oliyarnyk O, Trnovska J, Skop V, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014;57:1552–60. https://pubmed.ncbi.nlm.nih.gov/24838678/

66. Jakubowicz D, Wainstein J, Ahrén B, Bar-Dayan Y, Landau Z, Rabinovitz HR, et al. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia. 2015;58:912–19. https://pubmed.ncbi.nlm.nih.gov/25724569/

67. Arnason TG, Bowen MW, Mansell KD. Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study. World J Diabetes. 2017;8:154–64. https://pubmed.ncbi.nlm.nih.gov/28465792/