68. Thomas EA, Higgins J, Bessesen DH, McNair B, Cornier M-A. Usual breakfast eating habits affect response to breakfast skipping in overweight women. Obesity. 2015;23:750–59. https://pubmed.ncbi.nlm.nih.gov/25755093/
69. Farshchi HR, Taylor MA, Macdonald IA. Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur J Clin Nutr. 2004;58:1071–77. https://pubmed.ncbi.nlm.nih.gov/15220950/
70. Farshchi HR, Taylor MA, Macdonald IA. Beneficial metabolic effects of regular meal frequency on dietary thermogenesis, insulin sensitivity, and fasting lipid profiles in healthy obese women. Am J Clin Nutr. 2005;81:16–24. https://pubmed.ncbi.nlm.nih.gov/15640455/
71. Shishehbor F, Mansoori A, Shirani F. Vinegar consumption can attenuate postprandial glucose and insulin responses; a systematic review and metaanalysis of clinical trials. Diabetes Res Clin Pract. 2017;127:1–9. https:// pubmed.ncbi.nlm.nih.gov/28292654/
72. Lim J, Henry CJ, Haldar S. Vinegar as a functional ingredient to improve postprandial glycemic control-human intervention findings and molecular mechanisms. Mol Nutr Food Res. 2016;60:1837–49. https://pubmed.ncbi.nlm.nih.gov/27213723/
73. Liljeberg H, Björck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr. 1998;52:368–71. https://pubmed.ncbi.nlm.nih.gov/9630389/
74. Hlebowicz J, Darwiche G, Björgell O, Almér L-O. Effect of apple cider vinegar on delayed gastric emptying in patients with type 1 diabetes mellitus: a pilot study. BMC Gastroenterol. 2007;7:46. https://pubmed.ncbi.nlm.nih.gov/ 18093343/
75. Ogawa N, Satsu H, Watanabe H, Fukaya M, Tsukamoto Y, Miyamoto Y, et al. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J Nutr. 2000;130:507–13. https://pubmed.ncbi.nlm.nih.gov/10702577/
76. Noh Y-H, Lee D-B, Lee Y-W, Pyo Y-H. In vitro inhibitory effects of organic acids identified in commercial vinegars on α-amylase and α-glucosidase. Prev Nutr Food Sci. 2020;25:319–24. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC7541927/
77. Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;344:597–604. https://pubmed.ncbi.nlm.nih.gov/16630552/
78. Yamashita H, Maruta H, Jozuka M, Kimura R, Iwabuchi H, Yamato M, et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci Biotechnol Biochem. 2009;73:570–76. https://pubmed.ncbi.nlm.nih.gov/19270372/
79. Fushimi T, Sato Y. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Br J Nutr. 2005;94:714–19. https://pubmed.ncbi.nlm.nih.gov/16277773/
80. Mitrou P, Petsiou E, Papakonstantinou E, Maratou E, Lambadiari V, Dimitriadis P, et al. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J Diabetes Res. 2015;2015:175204. https://pubmed.ncbi.nlm.nih.gov/ 26064976/
81. Sakakibara S, Murakami R, Takahashi M, Fushimi T, Murohara T, Kishi M, et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci Biotechnol Biochem. 2010;74:1055–61. https://pubmed.ncbi.nlm.nih.gov/20460711/
82. Mitrou P, Petsiou E, Papakonstantinou E, Maratou E, Lambadiari V, Dimitriadis P, et al. The role of acetic acid on glucose uptake and blood flow rates in the skeletal muscle in humans with impaired glucose tolerance. Eur J Clin Nutr. 2015;69:734–39. https://www.nature.com/articles/ejcn2014289
83. Lambadiari V, Mitrou P, Maratou E, Raptis A, Raptis SA, Dimitriadis G. Increases in muscle blood flow after a mixed meal are impaired at all stages of type 2 diabetes. Clin Endocrinol. 2012;76:825–30. https://pubmed.ncbi.nlm.nih.gov/21950653/
84. Aykın E, Budak NH, Güzel-Seydim ZB. Bioactive components of mother vinegar. J Am Coll Nutr. 2015;34:80–89. https://pubmed.ncbi.nlm.nih.gov/ 25648676/
85. Imai S, Kajiyama S. Eating order diet reduced the postprandial glucose and glycated hemoglobin levels in Japanese patients with type 2 diabetes. J Rehabil Health Sci. 2010;8:1–7. https://www.rehab.osakafu-u.ac.jp/osakafu-content/uploads/sites/103/2015/12/jrhs_008_2010_01.pdf
86. Shukla AP, Iliescu RG, Thomas CE, Aronne LJ. Food order has a significant impact on postprandial glucose and insulin levels. Diabetes Care. 2015;38:e98–99. https://care.diabetesjournals.org/content/38/7/e98
87. Shukla AP, Andono J, Touhamy SH, Casper A, Iliescu RG, Mauer E, et al. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res Care. 2017;5:e000440. https://pubmed.ncbi.nlm.nih.gov/28989726/
88. Shukla AP, Dickison M, Coughlin N, Karan A, Mauer E, Truong W, et al. The impact of food order on postprandial glycaemic excursions in prediabetes. Diabetes Obes Metab. 2019;21:377–81. https://pubmed.ncbi.nlm.nih.gov/ 30101510/
89. Imai S, Fukui M, Ozasa N, Ozeki T, Kurokawa M, Komatsu T, et al. Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet Med. 2013;30:370–72. https://pubmed.ncbi.nlm.nih.gov/23167256/
90. Kuwata H, Iwasaki M, Shimizu S, Minami K, Maeda H, Seino S, et al. Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia. 2016;59:453–61. https://pubmed.ncbi.nlm.nih.gov/26704625/
91. Imai S, Matsuda M, Hasegawa G, Fukui M, Obayashi H, Ozasa N, et al. A simple meal plan of “eating vegetables before carbohydrate” was more effective for achieving glycemic control than an exchange-based meal plan in Japanese patients with type 2 diabetes. Asia Pac J Clin Nutr. 2011;20:161– 68. https://pubmed.ncbi.nlm.nih.gov/21669583/
92. Tricò D, Filice E, Trifirò S, Natali A. Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under freeliving conditions. Nutr Diabetes. 2016;6:e226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022147/
93. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med. 2013;11:452–59. https://pubmed.ncbi.nlm.nih.gov/24019277/
94. Wang J, Wang S, Yang J, Henning SM, Ezzat-Zadeh Z, Woo S-L, et al. Acute effects of cinnamon spice on post-prandial glucose and insulin in normal weight and overweight/obese subjects: a pilot study. Front Nutr. 2020;7:619782. https://pubmed.ncbi.nlm.nih.gov/33553233/
95. Magistrelli A, Chezem JC. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults. J Acad Nutr Diet. 2012;112:1806–9. https://pubmed.ncbi.nlm.nih.gov/23102179/
96. Kizilaslan N, Erdem NZ. The effect of different amounts of cinnamon consumption on blood glucose in healthy adult individuals. Int J Food Sci. 2019;2019:4138534. https://pubmed.ncbi.nlm.nih.gov/30949494/
97. Solomon TPJ, Blannin AK. Effects of short-term cinnamon ingestion on in vivo glucose tolerance. Diabetes Obes Metab. 2007;9:895–901. https:// pubmed.ncbi.nlm.nih.gov/17924872
98. Kim W, Khil LY, Clark R, Bok SH, Kim EE, Lee S, et al. Naphthalenemethyl ester derivative of dihydroxyhydrocinnamic acid, a component of cinnamon, increases glucose disposal by enhancing translocation of glucose transporter 4. Diabetologia. 2006;49:2437–48. https://link.springer.com/ article/10.1007/s00125-006-0373-6
Глава 6
1. Maksoud R, du Preez S, Eaton-Fitch N, Thapaliya K, Barnden L, Cabanas H, et al. A systematic review of neurological impairments in myalgic encephalomyelitis/ chronic fatigue syndrome using neuroimaging techniques. PLoS One. 2020;15:e0232475. https://pubmed.ncbi.nlm.nih.gov/ 32353033/
2. Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156:825–35. https://pubmed.ncbi.nlm.nih.gov/24529383/
3. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45. https://pubmed.ncbi.nlm.nih.gov/11598490/
4. Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem. 2017;143:418–31. https:// pubmed.ncbi.nlm.nih.gov/28397282/
5. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25. https://pubmed.ncbi.nlm.nih.gov/19664713/
6. Bested AC, Saunders PR, Logan AC. Chronic fatigue syndrome: neurological findings may be related to blood-brain barrier permeability. Med Hypotheses. 2001;57:231–37. https://pubmed.ncbi.nlm.nih.gov/11461179/
7. Wang Y. Leaky blood-brain barrier: a double whammy for the brain. Epilepsy Curr. 2020. p. 165–67. https://pubmed.ncbi.nlm.nih.gov/32550839/
8. Senatorov VV Jr, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 2019;11. http://dx.doi.org/10.1126/ scitranslmed.aaw8283
9. Milikovsky DZ, Ofer J, Senatorov VV Jr, Friedman AR, Prager O, Sheintuch L, et al. Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood-brain barrier dysfunction. Sci Transl Med. 2019;11. http://dx.doi.org/10.1126/scitranslmed.aaw8954
10. Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 1997;29:45–57. https://pubmed.ncbi.nlm.nih.gov/9000155/