Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 23 из 38

/pubmed.ncbi.nlm.nih.gov/ 25681666/

60. O’Brien JS. Stability of the myelin membrane. Science. 1965;147:1099–1107. https://pubmed.ncbi.nlm.nih.gov/14242030/

61. Svennerholm L. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res. 1968;9:570–79. https:// pubmed.ncbi.nlm.nih.gov/4302302/

62. Carver JD, Benford VJ, Han B, Cantor AB. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull. 2001;56:79–85. https://pubmed.ncbi.nlm.nih. gov/11704343/

63. Bradbury J. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients. 2011;3:529–54. https://pubmed.ncbi.nlm.nih.gov/22254110/

64. Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, et al. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 1999;34 Suppl:S39–S47. https://pubmed.ncbi.nlm.nih.gov/10419087/

65. Stark KD, Van Elswyk ME, Higgins MR, Weatherford CA, Salem N Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res. 2016;63:132–52. https://pubmed.ncbi.nlm.nih.gov/27216485/

66. Cole GM, Ma Q-L, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids. 2009;81:213–21. https://pubmed.ncbi.nlm.nih.gov/19523795/

67. Sethom MM, Fares S, Bouaziz N, Melki W, Jemaa R, Feki M, et al. Polyunsaturated fatty acids deficits are associated with psychotic state and negative symptoms in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 2010;83:131–36. https://pubmed.ncbi.nlm.nih.gov/ 20667702/

68. Su K-P, Matsuoka Y, Pae C-U. Omega-3 polyunsaturated fatty acids in prevention of mood and anxiety disorders. Clin Psychopharmacol Neurosci. 2015;13:129–37. https://pubmed.ncbi.nlm.nih.gov/26243838/

69. Astarita G, Jung K-M, Berchtold NC, Nguyen VQ, Gillen DL, Head E, et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One. 2010;5:e12538. https:// pubmed.ncbi.nlm.nih.gov/20838618/

70. Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One. 2015;10:e0120391. https://pubmed.ncbi.nlm.nih.gov/25786262/

71. Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients. 2021;13. http://dx.doi.org/10.3390/ nu13030986

72. Weiser MJ, Butt CM, Mohajeri MH. Docosahexaenoic acid and cognition throughout the lifespan. Nutrients. 2016;8:99. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772061/

73. Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One. 2014;9:e88103. https://pubmed.ncbi.nlm.nih.gov/24505395/

74. Joffre C, Rey C, Layé S. N-3 polyunsaturated fatty acids and the resolution of neuroinflammation. Front Pharmacol. 2019;10:1022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755339/

75. Castro-Marrero J, Zaragozá MC, Domingo JC, Martinez-Martinez A, Alegre J, von Schacky C. Low omega-3 index and polyunsaturated fatty acid status in patients with chronic fatigue syndrome/myalgic encephalomyelitis. Prostaglandins Leukot Essent Fatty Acids. 2018;139:20–24. https://pubmed.ncbi.nlm.nih.gov/30471769/

76. Maes M, Mihaylova I, Leunis J-C. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. Neuro Endocrinol Lett. 2005;26:745–51. https://pubmed.ncbi.nlm.nih.gov/16380690/

77. Visioli F, Risé P, Barassi MC, Marangoni F, Galli C. Dietary intake of fish vs. formulations leads to higher plasma concentrations of n-3 fatty acids. Lipids. 2003;38:415–18. https://pubmed.ncbi.nlm.nih.gov/12848287/

78. Arterburn LM, Oken HA, Bailey Hall E, Hamersley J, Kuratko CN, Hoffman JP. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. J Am Diet Assoc. 2008;108:1204–9. https://pubmed.ncbi.nlm.nih.gov/18589030/

79. Yurko-Mauro K, Kralovec J, Bailey-Hall E, Smeberg V, Stark JG, Salem N Jr. Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis. 2015;14:99. https://pubmed.ncbi.nlm.nih.gov/26328782/

80. Su H, Liu R, Chang M, Huang J, Jin Q, Wang X. Effect of dietary alphalinolenic acid on blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr. 2018;57:877–91. https://pubmed.ncbi.nlm.nih.gov/28275869/

81. Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab. 2007;32:619–34. https://pubmed.ncbi.nlm.nih.gov/17622276/

82. Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 2000;71:179S–88S. https://pubmed.ncbi.nlm.nih.gov/10617969/

83. Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res. 2009;50:1259–68. https://pubmed.ncbi.nlm.nih.gov/19112173/

84. Lukiw WJ, Bazan NG. Docosahexaenoic acid and the aging brain. J Nutr. 2008;138:2510–14. https://academic.oup.com/jn/ article/138/12/ 2510/4670186

85. Craft NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging. 2004;8:156–62. https://pubmed.ncbi.nlm.nih.gov/15129301/

86. Arnal E, Miranda M, Barcia J, Bosch-Morell F, Romero FJ. Lutein and docosahexaenoic acid prevent cortex lipid peroxidation in streptozotocininduced diabetic rat cerebral cortex. Neuroscience. 2010;166:271–78. https:// pubmed.ncbi.nlm.nih.gov/20036322/

87. Johnson EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A, Scott TM, et al. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia centenarian study.J Aging Res. 2013;2013:951786. https://pubmed.ncbi.nlm.nih.gov/23840953/

88. Nouchi R, Suiko T, Kimura E, Takenaka H, Murakoshi M, Uchiyama A, et al. Effects of lutein and astaxanthin intake on the improvement of cognitive functions among healthy adults: a systematic review of randomized controlled trials. Nutrients. 2020;12. http://dx.doi.org/10.3390/nu12030617

89. Stringham NT, Holmes PV, Stringham JM. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines, and cognitive performance. Physiol Behav. 2019;211:112650. https://pubmed.ncbi.nlm.nih.gov/31425700/

90. Chung H-Y, Rasmussen HM, Johnson EJ. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J Nutr. 2004;134:1887–93. https://pubmed.ncbi.nlm.nih.gov/15284371/

91. Burns-Whitmore BL, Haddad EH, Sabaté J, Jaceldo-Siegl K, Tanzman J, Rajaram S. Effect of n-3 fatty acid enriched eggs and organic eggs on serum lutein in free-living lacto-ovo vegetarians. Eur J Clin Nutr. 2010;64:1332–37. https://www.researchgate.net/publication/45389554_Effect_of_n-3_fatty_acid_enriched_eggs_and_organic_eggs_on_serum_lutein_in_free-living _lacto-ovo_vegetarians

92. Guilarte TR. Effect of vitamin B-6 nutrition on the levels of dopamine, dopamine metabolites, dopa decarboxylase activity, tyrosine, and GABA in the developing rat corpus striatum. Neurochem Res. 1989;14:571–78. https:// pubmed.ncbi.nlm.nih.gov/2761676/

93. Nelson C, Erikson K, Piñero DJ, Beard JL. In vivo dopamine metabolism is altered in iron-deficient anemic rats. J Nutr. 1997;127:2282–88. https:// pubmed.ncbi.nlm.nih.gov/9405575/

94. Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior. J Nutr Biochem. 2014;25:1101–7. https://pubmed.ncbi.nlm.nih.gov/ 25154570/

95. Stahl SM. L-methylfolate: a vitamin for your monoamines. J Clin Psychiatry. 2008;69:1352–53. https://pubmed.ncbi.nlm.nih.gov/19193337/

96. Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91:1461S–67S. https://pubmed.ncbi.nlm.nih.gov/20200263/

97. Reddy MB, Hurrell RF, Cook JD. Estimation of nonheme-iron bioavailability from meal composition. Am J Clin Nutr. 2000;71:937–43. https://pubmed.ncbi.nlm.nih.gov/10731500/

98. Stahl. L-methylfolate.

99. Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D. Folates in plants: research advances and progress in crop biofortification. Front Chem. 2017;5:21. https://pubmed.ncbi.nlm.nih.gov/28424769/

100. Wurtman RJ, Wurtman JJ. Carbohydrate craving, obesity and brain serotonin. Appetite. 1986;7 Suppl:99–103. https://pubmed.ncbi.nlm.nih.gov/3527063/

101. Chin EWM, Goh ELK. Modulating neuronal plasticity with choline. Neural Regeneration Res. 2019;14:1697–98. https://pubmed.ncbi.nlm.nih.gov/ 31169177/


PART II

Chapter 7

1. Heber D. Pomegranate Ellagitannins. In Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects (Boca Raton, FL: CRC Press/ Taylor & Francis, 2012).

2. Ismail T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Catanzaro E, et al. Ellagitannins in cancer chemoprevention and therapy. Toxins. 2016;8. http://dx.doi.org/10.3390/toxins8050151

3. Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin Nutr. 2004;23:423–33. https://pubmed.ncbi.nlm.nih.gov/15158307/