Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 25 из 38

39. Cespedes CL, Pavon N, Dominguez M, Alarcon J, Balbontin C, Kubo I, et al. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem Toxicol. 2017;108:438–50. https://pubmed.ncbi.nlm.nih.gov/28040469/

40. Watson RR, Schönlau F. Nutraceutical and antioxidant effects of a delphinidin-rich maqui berry extract Delphinol®: a review. Minerva Cardioangiol. 2015;63:1–12. https://pubmed.ncbi.nlm.nih.gov/25892567/

41. Vergara D, Ávila D, Escobar E, Carrasco-Pozo C, Sánchez A, Gotteland M. The intake of maqui (Aristotelia chilensis) berry extract normalizes H2O2 and IL-6 concentrations in exhaled breath condensate from healthy smokers – an explorative study. Nutr J. 2015;14:27. https://pubmed.ncbi.nlm.nih.gov/ 25889552/

42. Alvarado J, Schoenlau F, Leschot A, Salgad AM, Vigil Portales P. Delphinol® standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Med. 2016;58:1–6. https://pubmed.ncbi.nlm.nih.gov/27820958/

43. Hitoe S, Tanaka J, Shimoda H. MaquiBrightTM standardized maqui berry extract significantly increases tear fluid production and ameliorates dry eyerelated symptoms in a clinical pilot trial. Panminerva Med. 2014;56:1–6. https://pubmed.ncbi.nlm.nih.gov/25208615/

44. Yamashita S-I, Suzuki N, Yamamoto K, Iio S-I, Yamada T. Effects of MaquiBright® on improving eye dryness and fatigue in humans: A randomized, double-blind, placebo-controlled trial. Afr J Tradit Complement Altern Med. 2019;9:172–78. https://pubmed.ncbi.nlm.nih.gov/31193920/

45. Caldas APS, Coelho OGL, Bressan J. Cranberry antioxidant power on oxidative stress, inflammation and mitochondrial damage. Int J Food Prop. Taylor & Francis; 2018;21:582–92. https://www.tandfonline.com/doi/full/10.1080/10942912.2017.1409758

46. Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, et al. Impact of cranberries on gut microbiota and cardiometabolic health: proceedings of the cranberry health research conference 2015. Adv Nutr. 2016;7:759S–70S. https://www.ars.usda.gov/research/publications/ publication/?seq№ 115=325862

47. De Souza Schmidt Gonçalves AE, Lajolo FM, Genovese MI. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J Agric Food Chem. 2010;58:4666–74. https:// pubmed.ncbi.nlm.nih.gov/20337450/

48. Genovese MI, Da Silva Pinto M, De Souza Schmidt Gonçalves AE, Lajolo FM. Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil. Food Sci Technol Int. SAGE Publications Ltd STM; 2008;14:207–14. https://journals.sagepub.com/ doi/10.1177/1082013208092151

49. Justi KC, Visentainer JV, Evelázio de Souza N, Matsushita M. Nutritional composition and vitamin C stability in stored camu-camu (Myrciaria dubia) pulp. Arch Latinoam Nutr. 2000;50:405–8. https://pubmed.ncbi.nlm.nih.gov/11464674/

50. Fracassetti D, Costa C, Moulay L, Tomás-Barberán FA. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chem. 2013;139:578–88. https://pubmed.ncbi.nlm.nih.gov/23561148/

51. Langley PC, Pergolizzi JV Jr, Taylor R Jr, Ridgway C. Antioxidant and associated capacities of Camu camu (Myrciaria dubia): a systematic review. J Altern Complement Med. 2015;21:8–14. https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC4296744/

52. Fidelis M, do Carmo MAV, da Cruz TM, Azevedo L, Myoda T, Miranda Furtado M, et al. Camu-camu seed (Myrciaria dubia) – from side stream to anantioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chem. 2020;310:125909. https://pubmed.ncbi.nlm.nih.gov/31816536/

53. Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM. Small Brazilian wild fruits: nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int. 2018;103:345–60. https://pubmed.ncbi.nlm.nih.gov/29389624/

54. Nascimento OV, Boleti APA, Yuyama LKO, Lima ES. Effects of diet supplementation with Camu-camu (Myrciaria dubia HBK McVaugh) fruit in a rat model of diet-induced obesity. An Acad Bras Cienc. 2013;85:355–63. https://pubmed.ncbi.nlm.nih.gov/23460435/

55. Akachi T, Shiina Y, Kawaguchi T, Kawagishi H, Morita T, Sugiyama K. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats. Biosci Biotechnol Biochem. 2010;74:573–78. https://pubmed.ncbi.nlm.nih.gov/20208347/

56. Inoue T, Komoda H, Uchida T, Node K. Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties. J Cardiol. 2008;52:127–32. https://pubmed.ncbi.nlm.nih.gov/18922386/

57. Balisteiro DM, Araujo RL de, Giacaglia LR, Genovese MI. Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Res Int. 2017;100:196–203. https://pubmed.ncbi.nlm.nih.gov/ 28888441/

58. Miyashita T, Koizumi R, Myoda T, Sagane Y, Niwa K, Watanabe T, et al. Data on a single oral dose of camu camu (Myrciaria dubia) pericarp extract on flow-mediated vasodilation and blood pressure in young adult humans. Data Brief. 2018;16:993–99. https://europepmc.org/article/med/29322080

59. Yamamoto H, Morino K, Mengistu L, Ishibashi T, Kiriyama K, Ikami T, et al. Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line. Oxid Med Cell Longev. 2016;2016:1735841. https:// pubmed.ncbi.nlm.nih.gov/27340504/

60. Yokozawa T, Kim HY, Kim HJ, Tanaka T, Sugino H, Okubo T, et al. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress. J Agric Food Chem. 2007;55:7744–52. https://pubmed.ncbi.nlm.nih.gov/17715896/

61. Husain I, Zameer S, Madaan T, Minhaj A, Ahmad W, Iqubaal A, et al. Exploring the multifaceted neuroprotective actions of Emblica officinalis (Amla): a review. Metab Brain Dis. 2019;34:957–65. https://pubmed.ncbi.nlm.nih.gov/30848470/

62. Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev. 2011;20:225–39. https://pubmed.ncbi.nlm.nih.gov/21317655/

63. Krishnaveni M, Mirunalini S. Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol. 2010;21:93–105. https://pubmed.ncbi.nlm.nih.gov/20506691/

64. Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr. 2011;62:609–16. https:// pubmed.ncbi.nlm.nih.gov/21495900/

65. Usharani P, Fatima N, Muralidhar N. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes. 2013;6:275–84. https://pubmed.ncbi.nlm.nih.gov/23935377/

66. Usharani P, Merugu PL, Nutalapati C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: a randomised, double blind, placebo controlled clinical study. BMC Complement Altern Med. 2019;19:97. https:// pubmed.ncbi.nlm.nih.gov/31060549/

67. Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun. 2020;17:100499. https://pubmed.ncbi.nlm.nih.gov/31890983/

68. Ciferri O. Spirulina, the edible microorganism. Microbiol Rev. 1983;47:551– 78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC283708/

69. Nawrocka D, Kornicka K, Śmieszek A, Marycz K. Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in adiposederived mesenchymal stromal cells (ASCs) and intestinal epithelial cells (IECs), and enhances insulin sensitivity in equine metabolic syndrome (EMS) horses. Mar Drugs. 2017;15. http://dx.doi.org/10.3390/md15080237

70. Oriquat GA, Ali MA, Mahmoud SA, Eid RMHM, Hassan R, Kamel MA. Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl Physiol Nutr Metab. 2019;44:357–64. https://pubmed.ncbi.nlm.nih.gov/30208279/

71. Gao J, Zhao L, Wang J, Zhang L, Zhou D, Qu J, et al. C-phycocyanin ameliorates mitochondrial fission and fusion dynamics in ischemic cardiomyocyte damage. Front Pharmacol. 2019;10:733. https://pubmed.ncbi.nlm.nih.gov/31316386/

72. Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical application of spirulina platensis derived C-phycocyanin. Evid Based Complement Alternat Med. 2016;2016:7803846. https://pubmed.ncbi.nlm.nih.gov/27293463/

73. McCarty MF. Clinical potential of Spirulina as a source of phycocyanobilin. J Med Food. 2007;10:566–70. https://pubmed.ncbi.nlm.nih.gov/18158824/

74. Huang H, Liao D, Pu R, Cui Y. Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab Syndr Obes. 2018;11:729–42. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC6241722/

75. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective metaanalysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78. https://pubmed.ncbi.nlm.nih.gov/16214597/