76. Jansen T, Daiber A. Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Front Pharmacol. 2012;3:30. https:// pubmed.ncbi.nlm.nih.gov/22438843/
77. McDonagh AF. The biliverdin-bilirubin antioxidant cycle of cellular protection: missing a wheel? Free Radic Biol Med. 2010;49:814–20. https:// pubmed.ncbi.nlm.nih.gov/20547221/
78. Inoguchi T, Sonoda N, Maeda Y. Bilirubin as an important physiological modulator of oxidative stress and chronic inflammation in metabolic syndrome and diabetes: a new aspect on old molecule. Diabetol Int. 2016;7:338–41. https://pubmed.ncbi.nlm.nih.gov/30603284/
79. Kundur AR, Singh I, Bulmer AC. Bilirubin, platelet activation and heart disease: a missing link to cardiovascular protection in Gilbert’s syndrome? Atherosclerosis. 2015;239:73–84. https://pubmed.ncbi.nlm.nih.gov/ 25576848/
80. Kalafati M, Jamurtas AZ, Nikolaidis MG, Paschalis V, Theodorou AA, Sakellariou GK, et al. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med Sci Sports Exerc. 2010;42:142–51. https:// pubmed.ncbi.nlm.nih.gov/20010119/
81. Lu H-K, Hsieh C–C, Hsu J-J, Yang Y-K, Chou H-N. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur J Appl Physiol. 2006;98:220–26. https://pubmed.ncbi.nlm.nih.gov/16944194/
82. Johnson M, Hassinger L, Davis J, Devor ST, DiSilvestro RA. A randomized, double blind, placebo controlled study of spirulina supplementation on indices of mental and physical fatigue in men. Int J Food Sci Nutr. 2016;67:203–6. https://pubmed.ncbi.nlm.nih.gov/26888417/
83. Bito T, Okumura E, Fujishima M, Watanabe F. Potential of chlorella as a dietary supplement to promote human health. Nutrients. 2020;12. http:// dx.doi.org/10.3390/nu12092524
84. Panahi Y, Tavana S, Sahebkar A, Masoudi H, Madanchi N. Impact of adjunctive therapy with chlorella vulgaris extract on antioxidant status, pulmonary function, and clinical symptoms of patients with obstructive pulmonary diseases. Sci Pharm. 2012;80:719–30. https://pubmed.ncbi.nlm.nih.gov/23008817/
85. Panahi Y, Mostafazadeh B, Abrishami A, Saadat A, Beiraghdar F, Tavana S, et al. Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clin Lab. 2013;59:579–87. https://pubmed.ncbi.nlm.nih.gov/23865357/
86. Fallah AA, Sarmast E, Habibian Dehkordi S, Engardeh J, Mahmoodnia L, Khaledifar A, et al. Effect of chlorella supplementation on cardiovascular risk factors: a meta-analysis of randomized controlled trials. Clin Nutr. 2018;37:1892–1901. https://pubmed.ncbi.nlm.nih.gov/29037431/
87. Merchant RE, Carmack CA, Wise CM. Nutritional supplementation with Chlorella pyrenoidosa for patients with fibromyalgia syndrome: a pilot study. Phytother Res. 2000;14:167–73. https://pubmed.ncbi.nlm.nih.gov/ 10815009/
88. Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016;2016:7857186. https://pubmed.ncbi.nlm.nih.gov/26881038/
89. Eagles SK, Gross AS, McLachlan AJ. The effects of cruciferous vegetableenriched diets on drug metabolism: a systematic review and meta-analysis of dietary intervention trials in humans. Clin Pharmacol Ther. 2020;108:212–27. https://pubmed.ncbi.nlm.nih.gov/32086800/
90. Houghton. Sulforaphane and other nutrigenomic Nrf2 activators.
91. Conzatti A, Fróes FCT da S, Schweigert Perry ID, Souza CG de. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2014;31:559–69. https://pubmed.ncbi.nlm.nih.gov/25617536/
92. López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019;38:745–52. https://pubmed.ncbi.nlm.nih.gov/29573889/
93. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. J Nutr. 2001;131:955S–62S. https://pubmed.ncbi.nlm.nih.gov/11238796/
94. Moosavian SP, Arab A, Paknahad Z, Moradi S. The effects of garlic supplementation on oxidative stress markers: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2020;50:102385. https://pubmed.ncbi.nlm.nih.gov/32444050/
95. Darooghegi Mofrad M, Milajerdi A, Koohdani F, Surkan PJ, Azadbakht L. Garlic supplementation reduces circulating C-reactive protein, tumor necrosis factor, and interleukin-6 in adults: a systematic review and metaanalysis of randomized controlled trials. J Nutr. 2019;149:605–18. https:// pubmed.ncbi.nlm.nih.gov/30949665/
96. Taghizadeh M, Hamedifard Z, Jafarnejad S. Effect of garlic supplementation on serum C-reactive protein level: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33:243–52. https:// pubmed.ncbi.nlm.nih.gov/30370629/
97. Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13:28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/
98. Sun Y-E, Wang W, Qin J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: a meta-analysis. Medicine. 2018;97:e0255. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392629/
99. Ried K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr. 2016;146:389S–96S. https://pubmed.ncbi.nlm.nih.gov/ 26764326/
100. Panjeshahin A, Mollahosseini M, Panbehkar-Jouybari M, Kaviani M, Mirzavandi F, Hosseinzadeh M. Effects of garlic supplementation on liver enzymes: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2020;34:1947–55. https://pubmed.ncbi.nlm.nih.gov/ 32135032/
101. Khodaie L, Sadeghpoor O. Ginger from ancient times to the new outlook. Jundishapur J Nat Pharm Prod. 2015;10:e18402. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377061/
102. Lete I, Allué J. The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr Med Insights. 2016;11:11–17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818021/
103. Ibid.
104. Chang WP, Peng YX. Does the oral administration of ginger reduce chemotherapy-induced nausea and vomiting?: a meta-analysis of 10 randomized controlled trials. Cancer Nurs. 2019;42:E14–23. https://pubmed.ncbi.nlm.nih.gov/30299420/
105. Xu Y, Yang Q, Wang X. Efficacy of herbal medicine (cinnamon/fennel/ginger) for primary dysmenorrhea: a systematic review and meta-analysis of randomized controlled trials. J Int Med Res. 2020;48:300060520936179. https://pubmed.ncbi.nlm.nih.gov/32603204/
106. Jalali M, Mahmoodi M, Moosavian SP, Jalali R, Ferns G, Mosallanezhad A, et al. The effects of ginger supplementation on markers of inflammatory and oxidative stress: a systematic review and meta-analysis of clinical trials. Phytother Res. 2020;34:1723–33. https://clinicalnutritionespen.com/article/ S2405-4577(21)00261-8/fulltext
107. Hasani H, Arab A, Hadi A, Pourmasoumi M, Ghavami A, Miraghajani M. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytother Res. 2019;33:1639–47. https:// pubmed.ncbi.nlm.nih.gov/30972845/
108. Pourmasoumi M, Hadi A, Rafie N, Najafgholizadeh A, Mohammadi H, Rouhani MH. The effect of ginger supplementation on lipid profile: a systematic review and meta-analysis of clinical trials. Phytomedicine. 2018;43:28–36. https://pubmed.ncbi.nlm.nih.gov/29747751/
109. Maharlouei N, Tabrizi R, Lankarani KB, Rezaianzadeh A, Akbari M, Kolahdooz F, et al. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59:1753–66. https://pubmed.ncbi.nlm.nih.gov/29393665/
110. Dillinger TL, Barriga P, Escárcega S, Jimenez M, Salazar Lowe D, Grivetti LE. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr. 2000;130:2057S–72S. https://academic.oup.com/jn/article/130/8/2057S/4686320
111. Lippi D. Sin and pleasure: the history of chocolate in medicine. J Agric Food Chem. 2015;63:9936–41. https://pubs.acs.org/doi/10.1021/acs.jafc.5b00829
112. Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51:7292–95. https://pubmed.ncbi.nlm.nih.gov/14640573/
113. Jafari Azad B, Daneshzad E, Meysamie AP, Koohdani F. Chronic and acute effects of cocoa products intake on arterial stiffness and platelet count and function: a systematic review and dose-response Meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr. 2021;61:357–79. https:// pubmed.ncbi.nlm.nih.gov/32126803/
114. Sun Y, Zimmermann D, De Castro CA, Actis-Goretta L. Dose-response relationship between cocoa flavanols and human endothelial function: a systematic review and meta-analysis of randomized trials. Food Funct. 2019;10:6322–30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851825/
115. Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: a systematic review and metaanalysis of interventional studies. Complement Ther Med. 2020;48:102240. https://pubmed.ncbi.nlm.nih.gov/31987247/
116. Ried K, Fakler P, Stocks NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev. 2017;4:CD008893. https://pubmed.ncbi.nlm.nih.gov/ 28439881/