117. Lin X, Zhang I, Li A, Manson JE, Sesso HD, Wang L, et al. Cocoa flavanol intake and biomarkers for cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2016;146:2325–33. https://pubmed.ncbi.nlm.nih.gov/27683874/
118. Barreca D, Nabavi SM, Sureda A, Rasekhian M, Raciti R, Silva AS, et al. Almonds (Prunus Dulcis Mill. D. A. Webb): a source of nutrients and healthpromoting compounds. Nutrients. 2020;12. http://dx.doi.org/10.3390/ nu12030672
119. Asbaghi O, Moodi V, Hadi A, Eslampour E, Shirinbakhshmasoleh M, Ghaedi E, et al. The effect of almond intake on lipid profile: a systematic review and meta-analysis of randomized controlled trials. Food Funct. 2021;12:1882–96. https://pubs.rsc.org/en/content/articlelanding/2021/fo/d0fo02878a
120. Eslampour E, Moodi V, Asbaghi O, Ghaedi E, Shirinbakhshmasoleh M, Hadi A, et al. The effect of almond intake on anthropometric indices: a systematic review and meta-analysis. Food Funct. 2020;11:7340–55. https://pubmed.ncbi.nlm.nih.gov/32857083/
121. Kamil A, Chen C-YO. Health benefits of almonds beyond cholesterol reduction. J Agric Food Chem. 2012;60:6694–702. https://pubmed.ncbi.nlm.nih.gov/22296169/
122. Ellis PR, Kendall CWC, Ren Y, Parker C, Pacy JF, Waldron KW, et al. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am J Clin Nutr. 2004;80:604–13. https://pubmed.ncbi.nlm.nih.gov/15321799/
123. Cassady BA, Hollis JH, Fulford AD, Considine RV, Mattes RD. Mastication of almonds: effects of lipid bioaccessibility, appetite, and hormone response. Am J Clin Nutr. 2009;89:794–800. https://pubmed.ncbi.nlm.nih.gov/ 19144727/
124. Dhillon J, Li Z, Ortiz RM. Almond snacking for 8 wk increases alphadiversity of the gastrointestinal microbiome and decreases Bacteroides fragilis abundance compared with an isocaloric snack in college freshmen. Curr Dev Nutr. 2019;3:nzz079. https://pubmed.ncbi.nlm.nih.gov/31528836/
125. Scott TM, Rasmussen HM, Chen O, Johnson EJ. Avocado consumption increases macular pigment density in older adults: a randomized, controlled trial. Nutrients. 2017;9. http://dx.doi.org/10.3390/nu9090919
126. Peou S, Milliard-Hasting B, Shah SA. Impact of avocado-enriched diets on plasma lipoproteins: a meta-analysis. J Clin Lipidol. 2016;10:161–71. https:// pubmed.ncbi.nlm.nih.gov/26892133/
127. Schoeneck M, Iggman D. The effects of foods on LDL cholesterol levels: a systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021;31:1325–38. https://pubmed.ncbi.nlm.nih.gov/33762150/
128. Sousa FH, Valenti VE, Pereira LC, Bueno RR, Prates S, Akimoto AN, et al. Avocado (Persea americana) pulp improves cardiovascular and autonomic recovery following submaximal running: a crossover, randomized, doubleblind and placebo-controlled trial. Sci Rep. 2020;10:10703. https://pubmed.ncbi.nlm.nih.gov/32612186/
129. Wang L, Tao L, Hao L, Stanley TH, Huang K-H, Lambert JD, et al. A moderate-fat diet with one avocado per day increases plasma antioxidants and decreases the oxidation of small, dense LDL in adults with overweight and obesity: a randomized controlled trial. J Nutr. 2020;150:276–84. https:// pubmed.ncbi.nlm.nih.gov/31616932/
130. Park E, Edirisinghe I, Burton-Freeman B. Avocado fruit on postprandial markers of cardio-metabolic risk: a randomized controlled dose response trial in overweight and obese men and women. Nutrients. 2018;10. http://dx.doi.org/10.3390/nu10091287
131. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532–38. https://pubmed.ncbi.nlm.nih.gov/2802626/
132. Terao J, Minami Y, Bando N. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging. J Clin Biochem Nutr. 2011;48:57–62. https://www.jstage.jst.go.jp/article/ jcbn/48/1/48_11-008FR/_article
133. Rizwan M, Rodriguez-Blanco I, Harbottle A, Birch-Machin MA, Watson REB, Rhodes LE. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br J Dermatol. 2011;164:154–62. https://pubmed.ncbi.nlm.nih.gov/20854436/
134. Aust O, Stahl W, Sies H, Tronnier H, Heinrich U. Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int J Vitam Nutr Res. 2005;75:54–60. https://pubmed.ncbi.nlm.nih.gov/ 15830922/
135. Sokoloski L, Borges M, Bagatin E. Lycopene not in pill, nor in natura has photoprotective systemic effect. Arch Dermatol Res. 2015;307:545–49. https://pubmed.ncbi.nlm.nih.gov/26024575/
136. Aust. Supplementation with tomato-based products increases lycopene.
137. Engelmann NJ, Clinton SK, Erdman JW Jr. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Adv Nutr. 2011;2:51–61. https://pubmed.ncbi.nlm.nih.gov/22211189/
138. Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, et al. Tomato and lycopene and multiple health outcomes: umbrella review. Food Chem. 2021;343:128396. https://pubmed.ncbi.nlm.nih.gov/33131949/
139. Li H, Chen A, Zhao L, Bhagavathula AS, Amirthalingam P, Rahmani J, et al. Effect of tomato consumption on fasting blood glucose and lipid profiles: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2020;34:1956–65. https://ur.booksc.eu/book/81562647/ c24dd6
140. Rowles JL 3rd, Ranard KM, Applegate CC, Jeon S, An R, Erdman JW Jr. Processed and raw tomato consumption and risk of prostate cancer: a systematic review and dose-response meta-analysis. Prostate Cancer Prostatic Dis. 2018;21:319–36. https://pubmed.ncbi.nlm.nih.gov/29317772/
141. Rowles JL 3rd, Ranard KM, Smith JW, An R, Erdman JW Jr. Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017;20:361–77. https://pubmed.ncbi.nlm.nih.gov/28440323/
142. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156– 67. https://pubmed.ncbi.nlm.nih.gov/18167491/
143. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42. https://pubmed.ncbi.nlm.nih.gov/1852778/
144. Bondonno CP, Croft KD, Hodgson JM. Dietary nitrate, nitric oxide, and cardiovascular health. Crit Rev Food Sci Nutr. 2016;56:2036–52. https:// pubmed.ncbi.nlm.nih.gov/25976309/
145. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90:1– 10. https://pubmed.ncbi.nlm.nih.gov/19439460/
146. McMahon NF, Leveritt MD, Pavey TG. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med. 2017;47:735–56. https:// pubmed.ncbi.nlm.nih.gov/27600147/
147. Chang ST, Wasser SP. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;14:95–134. https://pubmed.ncbi.nlm.nih.gov/22506573/
148. Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387. https://pubmed.ncbi.nlm.nih.gov/25685150/
149. Jayachandran M, Xiao J, Xu B. A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int J Mol Sci. 2017;18. http:// dx.doi.org/10.3390/ijms18091934
150. Volman JJ, Mensink RP, van Griensven LJLD, Plat J. Effects of alphaglucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur J Clin Nutr. 2010;64:720–26. https:// pubmed.ncbi.nlm.nih.gov/20197785/
151. Jeong SC, Koyyalamudi SR, Pang G. Dietary intake of Agaricus bisporus white button mushroom accelerates salivary immunoglobulin A secretion in healthy volunteers. Nutrition. 2012;28:527–31. https://pubmed.ncbi.nlm.nih.gov/22113068/
152. Varshney J, Ooi JH, Jayarao BM, Albert I, Fisher J, Smith RL, et al. White button mushrooms increase microbial diversity and accelerate the resolution of Citrobacter rodentium infection in mice. J Nutr. 2013;143:526–32. https:// pubmed.ncbi.nlm.nih.gov/23343678/
153. Wu D, Pae M, Ren Z, Guo Z, Smith D, Meydani SN. Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice. J Nutr. 2007;137:1472–77. https://pubmed.ncbi.nlm.nih.gov/ 17513409/
154. Jesenak M, Hrubisko M, Majtan J, Rennerova Z, Banovcin P. Anti-allergic effect of Pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother Res. 2014;28:471–74. https:// pubmed.ncbi.nlm.nih.gov/23744488/
155. Bergendiova K, Tibenska E, Majtan J. Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur J Appl Physiol. 2011;111:2033–40. https:// pubmed.ncbi.nlm.nih.gov/21249381/
156. Bobovčák M, Kuniaková R, Gabriž J, Majtán J. Effect of Pleuran (β-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes. Appl Physiol Nutr Metab. 2010;35:755–62. https://pubmed.ncbi.nlm.nih.gov/21164546/
157. Ofek I, Pruzzo C, Spratt D. Functional foods: towards improving oral health. J Biomed Biotechnol. 2012;2012:618314. https://www.hindawi.com/ journals/bmri/2012/618314/
158. Dai X, Stanilka JM, Rowe CA, Esteves EA, Nieves C Jr, Spaiser SJ, et al. Consuming lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34:478–87. https://pubmed.ncbi.nlm.nih.gov/25866155/