Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 28 из 38

159. Mugnai C, Sossidou EN, Dal Bosco A, Ruggeri S, Mattioli S, Castellini C. The effects of husbandry system on the grass intake and egg nutritive characteristics of laying hens. J Sci Food Agric. 2014;94:459–67. https:// pubmed.ncbi.nlm.nih.gov/23775487/

160. Ibid.

161. Lopez-Bote CJ, Sanz Arias R, Rey AI, Castaño A, Isabel B, Thos J. Effect of free-range feeding on n−3 fatty acid and α-tocopherol content and oxidative stability of eggs. Anim Feed Sci Technol. 1998;72:33–40. http://www.centerforfoodsafety.org/files/lopez-bote-1998_32145.pdf 162. Mugnai. The effects of husbandry system.

163. Lopez-Bote. Effect of free-range feeding on n−3 fatty acid.

164. Saito H, Cherasse Y, Suzuki R, Mitarai M, Ueda F, Urade Y. Zinc-rich oysters as well as zinc-yeast- and astaxanthin-enriched food improved sleep efficiency and sleep onset in a randomized controlled trial of healthy individuals. Mol Nutr Food Res. 2017;61. http://dx.doi.org/10.1002/mnfr.201600882

165. Ho HVT, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, et al. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr. 2016;116:1369–82. https://pubmed.ncbi.nlm.nih.gov/27724985/

166. Bao L, Cai X, Xu M, Li Y. Effect of oat intake on glycaemic control and insulin sensitivity: a meta-analysis of randomised controlled trials. Br J Nutr. 2014;112:457–66. https://pubmed.ncbi.nlm.nih.gov/24787712/

167. Shen XL, Zhao T, Zhou Y, Shi X, Zou Y, Zhao G. Effect of oat β-glucan intake on glycaemic control and insulin sensitivity of diabetic patients: a metaanalysis of randomized controlled trials. Nutrients. 2016;8. http://dx.doi.org/10.3390/nu8010039

168. Musa-Veloso K, Noori D, Venditti C, Poon T, Johnson J, Harkness LS, et al. A systematic review and meta-analysis of randomized controlled trials on the effects of oats and oat processing on postprandial blood glucose and insulin responses. J Nutr. 2021;151:341–51. https://europepmc.org/article/med/33296453

169. Chen C-YO, Milbury PE, Collins FW, Blumberg JB. Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J Nutr. 2007;137:1375–82. https://pubmed.ncbi.nlm.nih.gov/17513394/

170. Zhang T, Zhao T, Zhang Y, Liu T, Gagnon G, Ebrahim J, et al. Avenanthramide supplementation reduces eccentric exercise-induced inflammation in young men and women. J Int Soc Sports Nutr. 2020;17:41. https://pubmed.ncbi.nlm.nih.gov/32711519/

171. Koenig RT, Dickman JR, Kang C-H, Zhang T, Chu Y-F, Ji LL. Avenanthramide supplementation attenuates eccentric exercise-inflicted blood inflammatory markers in women. Eur J Appl Physiol. 2016;116:67–76. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382060/

172. Koenig R, Dickman JR, Kang C, Zhang T, Chu Y-F, Ji LL. Avenanthramide supplementation attenuates exercise-induced inflammation in postmenopausal women. Nutr J. 2014;13:21. https://pubmed.ncbi.nlm.nih.gov/24645793/

173. Reverri EJ, Randolph JM, Steinberg FM, Kappagoda CT, Edirisinghe I, BurtonFreeman BM. Black beans, fiber, and antioxidant capacity pilot study: examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients. 2015;7:6139–54. https://pubmed.ncbi.nlm.nih.gov/ 26225995/

174. Winham DM, Hutchins AM, Thompson SV. Glycemic response to black beans and chickpeas as part of a rice meal: a randomized cross-over trial. Nutrients. 2017;9. http://dx.doi.org/10.3390/nu9101095

175. Clark JL, Taylor CG, Zahradka P. Black beans and red kidney beans induce positive postprandial vascular responses in healthy adults: a pilot randomized cross-over study. Nutr Metab Cardiovasc Dis. 2021;31:216–26. https://pubmed.ncbi.nlm.nih.gov/32917495/

176. Li SS, Blanco Mejia S, Lytvyn L, Stewart SE, Viguiliouk E, Ha V, et al. Effect of plant protein on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2017;6. http://dx.doi.org/ 10.1161/JAHA.117.006659

177. Liu XX, Li SH, Chen JZ, Sun K, Wang XJ, Wang XG, et al. Effect of soy isoflavones on blood pressure: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2012;22:463–70. https://pubmed.ncbi.nlm.nih.gov/21310599/

178. Dong J-Y, Tong X, Wu Z-W, Xun P-C, He K, Qin L-Q. Effect of soya protein on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr. 2011;106:317–26. https://pubmed.ncbi.nlm.nih.gov/21342608/

179. Beavers DP, Beavers KM, Miller M, Stamey J, Messina MJ. Exposure to isoflavone-containing soy products and endothelial function: a Bayesian meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2012;22:182–91. https://pubmed.ncbi.nlm.nih.gov/20709515/

180. Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies. Eur J Prev Cardiol. 2017;24:735–47. https://pubmed.ncbi.nlm.nih.gov/28067550/

Chapter 8

1. Misner B. Food alone may not provide sufficient micronutrients for preventing deficiency. J Int Soc Sports Nutr. 2006;3:51–55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2129155/

2. Calton JB. Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 2010;7:24. https://pubmed.ncbi.nlm.nih.gov/20537171/

3. Fulgoni VL 3rd, Keast DR, Bailey RL, Dwyer J. Foods, fortificants, and supplements: where do Americans get their nutrients? J Nutr. 2011;141:1847–54. https://pubmed.ncbi.nlm.nih.gov/21865568/

4. Bird JK, Murphy RA, Ciappio ED, McBurney MI. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients. 2017;9. http://dx.doi.org/10.3390/nu9070655

5. Tardy A-L, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients. 2020;12. http://dx.doi.org/ 10.3390/nu12010228

6. Macpherson H, Pipingas A, Pase MP. Multivitamin-multimineral supplementation and mortality: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2013;97:437–44. https://www.ncbi.nlm.nih.gov/ books/NBK126994/

7. Maric D, Brkic S, Tomic S, Novakov Mikic A, Cebovic T, Turkulov V. Multivitamin mineral supplementation in patients with chronic fatigue syndrome. Med Sci Monit. 2014;20:47–53. https://pubmed.ncbi.nlm.nih.gov/24419360/

8. Zingg J-M. Molecular and cellular activities of vitamin E analogues. Mini Rev Med Chem. 2007;7:543–58. https://pubmed.ncbi.nlm.nih.gov/17504191/

9. Russo P, Pala M, Parodi S, Ghiara C, Ferrari N, Vidali G. Effects of vitamin E on liver DNA. Cancer Lett. 1984;25:163–70. https://pubmed.ncbi.nlm.nih.gov/6509435/

10. Klein EA, Thompson IM Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2011;306:1549–56. https://pubmed.ncbi.nlm.nih.gov/21990298/

11. Kuo H-K, Sorond FA, Chen J-H, Hashmi A, Milberg WP, Lipsitz LA. The role of homocysteine in multisystem age-related problems: a systematic review. J Gerontol A Biol Sci Med Sci. 2005;60:1190–201. https://academic.oup.com/biomedgerontology/article/60/9/1190/560525

12. Regland B, Andersson M, Abrahamsson L, Bagby J, Dyrehag LE, Gottfries CG. Increased concentrations of homocysteine in the cerebrospinal fluid in patients with fibromyalgia and chronic fatigue syndrome. Scand J Rheumatol. 1997;26:301–7. https://pubmed.ncbi.nlm.nih.gov/9310111/

13. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 2018;62:561–70. https://pubmed.ncbi.nlm.nih.gov/ 29480200/

14. Zhou F, Chen S. Hyperhomocysteinemia and risk of incident cognitive outcomes: an updated dose-response meta-analysis of prospective cohort studies. Ageing Res Rev. 2019;51:55–66. https://pubmed.ncbi.nlm.nih.gov/ 30826501/

15. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64:169–72. https:// pubmed.ncbi.nlm.nih.gov/9719624/

16. van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62:1044–51. https://pubmed.ncbi.nlm.nih.gov/9545395/

17. Chango A, Boisson F, Barbé F, Quilliot D, Droesch S, Pfister M, et al. The effect of 677C->T and 1298A->C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. Br J Nutr. 2000;83:593–96. https://pubmed.ncbi.nlm.nih.gov/10911766/

18. Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D. Folates in plants: research advances and progress in crop biofortification. Front Chem. 2017;5:21. https://pubmed.ncbi.nlm.nih.gov/28424769/

19. Paul C, Brady DM. Comparative bioavailability and utilization of particular forms of B12 supplements with potential to mitigate B12-related genetic polymorphisms. Integr Med. 2017;16:42–49. https://pubmed.ncbi.nlm.nih.gov/28223907/

20. Okuda K, Yashima K, Kitazaki T, Takara I. Intestinal absorption and concurrent chemical changes of methylcobalamin. J Lab Clin Med. 1973;81:557–67. https://pubmed.ncbi.nlm.nih.gov/4696188/

21. Chalmers JN, Shinton NK. Comparison of hydroxocobalamin and cyanocobalamin in the treatment of pernicious anaemia. Lancet. 1965;2:1305–8. https://pubmed.ncbi.nlm.nih.gov/4165301/