Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 29 из 38

22. Nicolson GL, Ash ME. Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta. 2014;1838:1657–79. https:// pubmed.ncbi.nlm.nih.gov/24269541/

23. Ibid.

24. Agadjanyan M, Vasilevko V, Ghochikyan A, Berns P, Kesslak P, Settineri RA, et al. Nutritional supplement (NT FactorTM) restores mitochondrial function and reduces moderately severe fatigue in aged subjects. J Chronic Fatigue Syndr. Taylor & Francis; 2003;11:23–36. https://www.tandfonline.com/doi/ abs/10.1300/J092v11n03_03

25. Nicolson GL, Rosenblatt S, de Mattos GF, Settineri R, Breeding PC, Ellithorpe RR, et al. Clinical uses of membrane lipid replacement supplements in restoring membrane function and reducing fatigue in chronic diseases and cancer. Discoveries (Craiova). 2016;4:e54. https://pubmed.ncbi.nlm.nih.gov/ 32309576/

26. Dahash BA, Sankararaman S. Carnitine Deficiency. StatPearls. (Treasure Island, FL: StatPearls Publishing, 2020). https://www.ncbi.nlm.nih.gov/books/ NBK559041/

27. Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, et al. Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin. 2014;1:12–23. https://pubmed.ncbi.nlm.nih.gov/ 25147756/

28. Malaguarnera M, Gargante MP, Cristaldi E, Colonna V, Messano M, Koverech A, et al. Acetyl L-carnitine (ALC) treatment in elderly patients with fatigue. Arch Gerontol Geriatr. 2008;46:181–90. https://pubmed.ncbi.nlm.nih.gov/ 17658628/

29. Aliev G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG, et al. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med. 2009;13:320–33. https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC2790425/

30. Nicassio L, Fracasso F, Sirago G, Musicco C, Picca A, Marzetti E, et al. Dietary supplementation with acetyl-l-carnitine counteracts age-related alterations of mitochondrial biogenesis, dynamics and antioxidant defenses in brain of old rats. Exp Gerontol. 2017;98:99–109. https://www.sciencedirect.com/science/ article/abs/pii/S0531556517304849?via%3Dihub

31. Kobayashi S, Iwamoto M, Kon K, Waki H, Ando S, Tanaka Y. Acetyl-Lcarnitine improves aged brain function. Geriatr Gerontol Int. 2010;10 Suppl 1:S99–106. https://pubmed.ncbi.nlm.nih.gov/20590847/

32. Imperato A, Ramacci MT, Angelucci L. Acetyl-L-carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci Lett. 1989;107:251–55. https://pubmed.ncbi.nlm.nih.gov/2616037/

33. Smeland OB, Meisingset TW, Borges K, Sonnewald U. Chronic acetyl-Lcarnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int. 2012;61:100–7. https:// pubmed.ncbi.nlm.nih.gov/22549035/

34. Dhitavat S, Ortiz D, Shea TB, Rivera ER. Acetyl-L-carnitine protects against amyloid-beta neurotoxicity: roles of oxidative buffering and ATP levels. Neurochem Res. 2002;27:501–5. https://pubmed.ncbi.nlm.nih.gov/ 12199155/

35. Liu J, Head E, Kuratsune H, Cotman CW, Ames BN. Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress biomarkers in the brain of old rats. Ann N Y Acad Sci. 2004;1033:117–31. https://pubmed.ncbi.nlm.nih.gov/15591009/

36. Pennisi M, Lanza G, Cantone M, D’Amico E, Fisicaro F, Puglisi V, et al. Acetyl-L-carnitine in dementia and other cognitive disorders: a critical update. Nutrients. 2020;12. http://dx.doi.org/10.3390/nu12051389

37. Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol. 2003;18:61–71. https://pubmed.ncbi.nlm.nih.gov/12598816/

38. Veronese N, Stubbs B, Solmi M, Ajnakina O, Carvalho AF, Maggi S. AcetylL-carnitine supplementation and the treatment of depressive symptoms: a systematic review and meta-analysis. Psychosom Med. 2018;80:154–59. https://pubmed.ncbi.nlm.nih.gov/29076953/

39. Dempsey RL, Mazzone MF, Meurer LN. Does oral creatine supplementation improve strength? A meta-analysis. J Fam Pract. 2002;51:945–51. https:// pubmed.ncbi.nlm.nih.gov/12485548/

40. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13:198–226. https://pubmed.ncbi.nlm.nih.gov/12945830/

41. Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage F-X, Dutheil F. Creatine supplementation and upper limb strength performance: a systematic review and meta-analysis. Sports Med. 2017;47:163–73. https:// pubmed.ncbi.nlm.nih.gov/27328852/

42. Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage F-X, Dutheil F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med. 2015;45:1285–94. https:// pubmed.ncbi.nlm.nih.gov/25946994/

43. Chilibeck PD, Kaviani M, Candow DG, Zello GA. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017;8:213–26. https://pubmed.ncbi.nlm.nih.gov/29138605/

44. Sestili P, Barbieri E, Martinelli C, Battistelli M, Guescini M, Vallorani L, et al. Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Mol Nutr Food Res. 2009;53:1187–204. https://pubmed.ncbi.nlm.nih.gov/19653222/

45. Sestili P, Barbieri E, Stocchi V. Effects of creatine in skeletal muscle cells and in myoblasts differentiating under normal or oxidatively stressing conditions. Mini Rev Med Chem. 2016;16:4–11. https://pubmed.ncbi.nlm.nih.gov/26202198/

46. Barbieri E, Guescini M, Calcabrini C, Vallorani L, Diaz AR, Fimognari C, et al. Creatine prevents the structural and functional damage to mitochondria in myogenic, oxidatively stressed C2C12 cells and restores their differentiation capacity. Oxid Med Cell Longev. 2016;2016:5152029. https://www.hindawi.com/journals/omcl/2016/5152029/

47. Walsh B, Tonkonogi M, Söderlund K, Hultman E, Saks V, Sahlin K. The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2001;537:971–78. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2278998/

48. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and effects of creatine in the central nervous system. Brain Res Bull. 2008;76:329–43. https://pubmed.ncbi.nlm.nih.gov/18502307/

49. Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J. Increase of total creatine in human brain after oral supplementation of creatinemonohydrate. Am J Physiol. 1999;277:R698–704. https://pubmed.ncbi.nlm.nih.gov/10484486/

50. Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, et al. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatinemonohydrate. Psychiatry Res. 2003;123:87–100. https://pubmed.ncbi.nlm.nih.gov/12850248/

51. Pan JW, Takahashi K. Cerebral energetic effects of creatine supplementation in humans. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1745–50. https://pubmed.ncbi.nlm.nih.gov/17185404/

52. Klein AM, Ferrante RJ. The neuroprotective role of creatine. Subcell Biochem. 2007;46:205–43. https://pubmed.ncbi.nlm.nih.gov/18652079/

53. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–63. https://pubmed.ncbi.nlm.nih.gov/1731369/

54. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther. 2018;26:225–41. https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC5933890/

55. Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18:2673–86. https://pubmed.ncbi.nlm.nih.gov/23170060/

56. Hansen SH, Andersen ML, Birkedal H, Cornett C, Wibrand F. The important role of taurine in oxidative metabolism. Adv Exp Med Biol. 2006;583:129–35. https://pubmed.ncbi.nlm.nih.gov/17153596/

57. Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 2012;42:2223–32. https://pubmed.ncbi.nlm.nih.gov/21691752/

58. Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr. 2020;12:9. https://pubmed.ncbi.nlm.nih.gov/32015761/

59. Rosa FT, Freitas EC, Deminice R, Jordão AA, Marchini JS. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014;53:823–30. https://pubmed.ncbi.nlm.nih.gov/24065043/

60. Xiao C, Giacca A, Lewis GF. Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia. 2008;51:139–46. https://pubmed.ncbi.nlm.nih.gov/18026714/

61. Waldron M, Patterson SD, Tallent J, Jeffries O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-analysis. Sports Med. 2018;48:1247–53. https://pubmed.ncbi.nlm.nih.gov/29546641/

62. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 2003;21:210–16. https:// pubmed.ncbi.nlm.nih.gov/12727382/

63. Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio K, Satou A, et al. Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nutr Biochem. 2010;21:381–89. https://pubmed.ncbi.nlm.nih.gov/ 19423317/