Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 30 из 38

64. Yu T, Dohl J, Chen Y, Gasier HG, Deuster PA. Astaxanthin but not quercetin preserves mitochondrial integrity and function, ameliorates oxidative stress, and reduces heat-induced skeletal muscle injury. J Cell Physiol. 2019;234:13292–302. https://pubmed.ncbi.nlm.nih.gov/30609021/

65. Krestinina O, Baburina Y, Krestinin R, Odinokova I, Fadeeva I, Sotnikova L. Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria. Antioxidants (Basel). 2020;9. http://dx.doi.org/10.3390/antiox9030262

66. Kim SH, Kim H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction – a mini-review. Nutrients. 2018;10. http:// dx.doi.org/10.3390/nu10091137

67. Park JS, Mathison BD, Hayek MG, Zhang J, Reinhart GA, Chew BP. Astaxanthin modulates age-associated mitochondrial dysfunction in healthy dogs. J Anim Sci. 2013;91:268–75. https://pubmed.ncbi.nlm.nih.gov/ 23100599/

68. Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, et al. Astaxanthin: a potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxid Med Cell Longev. 2019;2019:3849692. https:// pubmed.ncbi.nlm.nih.gov/31814873/

69. Choi HD, Kim JH, Chang MJ, Kyu-Youn Y, Shin WG. Effects of astaxanthin on oxidative stress in overweight and obese adults. Phytother Res. 2011;25:1813–8. https://pubmed.ncbi.nlm.nih.gov/21480416/

70. Liu SZ, Ali AS, Campbell MD, Kilroy K, Shankland EG, Roshanravan B, et al. Building strength, endurance, and mobility using an astaxanthin formulation with functional training in elderly. J Cachexia Sarcopenia Muscle. 2018;9:826–33. https://pubmed.ncbi.nlm.nih.gov/30259703/

71. Malmsten CL, Lignell A. Dietary supplementation with astaxanthin-rich algal meal improves strength endurance – a double blind placebo controlled study on male students. Carotenoid Sci. 2008;13:20–22. https://www.alifenutrition.cz/userfiles/dietary-supplementation-with-astaxanthin-rich-algal-meal-improves-strength-endurance.pdf

72. Fleischmann C, Horowitz M, Yanovich R, Raz H, Heled Y. Asthaxanthin improves aerobic exercise recovery without affecting heat tolerance in humans. Front Sports Act Living. 2019;1:17. https://pubmed.ncbi.nlm.nih.gov/33344941/

73. Djordjevic B, Baralic I, Kotur-Stevuljevic J, Stefanovic A, Ivanisevic J, Radivojevic N, et al. Effect of astaxanthin supplementation on muscle damage and oxidative stress markers in elite young soccer players. J Sports Med Phys Fitness. 2012;52:382–92. https://pubmed.ncbi.nlm.nih.gov/22828460/

74. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta. 2009;1790:1149–60. https://pubmed.ncbi.nlm.nih.gov/19664690/

75. Savitha S, Sivarajan K, Haripriya D, Kokilavani V, Panneerselvam C. Efficacy of levo carnitine and alpha lipoic acid in ameliorating the decline in mitochondrial enzymes during aging. Clin Nutr. 2005;24:794–800. https:// pubmed.ncbi.nlm.nih.gov/15919137/

76. Long J, Gao F, Tong L, Cotman CW, Ames BN, Liu J. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-Lcarnitine. Neurochem Res. 2009;34:755–63. https://europepmc.org/article/ PMC/2790461

77. Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci U S A. 2002;99:1876–81. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122287/

78. Liu J. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res. 2008;33:194–203. https://pubmed.ncbi.nlm.nih.gov/17605107/

79. Dos Santos SM, Romeiro CFR, Rodrigues CA, Cerqueira ARL, Monteiro MC. Mitochondrial dysfunction and alpha-lipoic acid: beneficial or harmful in Alzheimer’s disease? Oxid Med Cell Longev. 2019;2019:8409329. https:// pubmed.ncbi.nlm.nih.gov/31885820/

80. Panigrahi M, Sadguna Y, Shivakumar BR, Kolluri SV, Roy S, Packer L, et al. Alpha-lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res. 1996;717:184–88. https://pubmed.ncbi.nlm.nih.gov/8738270/

81. Arivazhagan P, Shila S, Kumaran S, Panneerselvam C. Effect of DL-alphalipoic acid on the status of lipid peroxidation and antioxidant enzymes in various brain regions of aged rats. Exp Gerontol. 2002;37:803–11. https:// pubmed.ncbi.nlm.nih.gov/12175480/

82. Zhang L, Xing GQ, Barker JL, Chang Y, Maric D, Ma W, et al. Alpha-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett. 2001;312:125–28. https://pubmed.ncbi.nlm.nih.gov/11602326/

83. Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis. 2014;38:111–20. https://pubmed.ncbi.nlm.nih.gov/24077434/

84. Pershadsingh HA. Alpha-lipoic acid: physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs. 2007;16:291–302. https://pubmed.ncbi.nlm.nih.gov/17302524/

85. Chen W-L, Kang C-H, Wang S-G, Lee H-M. α-lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMPactivated protein kinase. Diabetologia. 2012;55:1824–35. https://pubmed.ncbi.nlm.nih.gov/22456698/

86. Carbonelli MG, Di Renzo L, Bigioni M, Di Daniele N, De Lorenzo A, Fusco MA. Alpha-lipoic acid supplementation: a tool for obesity therapy? Curr Pharm Des. 2010;16:840–46. https://pubmed.ncbi.nlm.nih.gov/20388095/

87. Koh EH, Lee WJ, Lee SA, Kim EH, Cho EH, Jeong E, et al. Effects of alphalipoic acid on body weight in obese subjects. Am J Med. 2011;124:85.e1–8. https://pubmed.ncbi.nlm.nih.gov/21187189/

88. Li N, Yan W, Hu X, Huang Y, Wang F, Zhang W, et al. Effects of oral α-lipoic acid administration on body weight in overweight or obese subjects: a crossover randomized, double-blind, placebo-controlled trial. Clin Endocrinol. 2017;86:680–87. https://pubmed.ncbi.nlm.nih.gov/28239907/

89. Conley BA, Egorin MJ, Tait N, Rosen DM, Sausville EA, Dover G, et al. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin Cancer Res. 1998;4:629–34. https://pubmed.ncbi.nlm.nih.gov/9533530/

90. Edelman MJ, Bauer K, Khanwani S, Tait N, Trepel J, Karp J, et al. Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother Pharmacol. 2003;51:439–44. https://pubmed.ncbi.nlm.nih.gov/12736763/

91. Miyoshi M, Sakaki H, Usami M, Iizuka N, Shuno K, Aoyama M, et al. Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharide-induced liver injury in rats. Clin Nutr. 2011;30:252–8. https://pubmed.ncbi.nlm.nih.gov/21051124/

92. Cresci GA, Glueck B, McMullen MR, Xin W, Allende D, Nagy LE. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol. 2017;32:1587–97. https://pubmed.ncbi.nlm.nih.gov/28087985/

93. Vinolo MAR, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab. 2012;303:E272–82. https://pubmed.ncbi.nlm.nih.gov/22621868/

94. Wang C, Cao S, Shen Z, Hong Q, Feng J, Peng Y, et al. Effects of dietary tributyrin on intestinal mucosa development, mitochondrial function and AMPK-mTOR pathway in weaned pigs. J Anim Sci Biotechnol. 2019;10:93. https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0394-x

95. Murray RL, Zhang W, Iwaniuk M, Grilli E, Stahl CH. Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells. Physiol Rep. 2018;6:e13706. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974723/

96. Szentirmai É, Millican NS, Massie AR, Kapás L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep. 2019;9:7035. https://www.nature.com/articles/s41598-019-43502-1

97. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63. https://pubmed.ncbi.nlm.nih.gov/26868600/

98. Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, et al. Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin. 2014;1:12–23. https://pubmed.ncbi.nlm.nih.gov/ 25147756/

99. Cordero MD, Moreno-Fernández AM, deMiguel M, Bonal P, Campa F, Jiménez-Jiménez LM, et al. Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia. Clin Biochem. 2009;42:732–35. https://pubmed.ncbi.nlm.nih.gov/19133251/

100. Di Pierro F, Rossi A, Consensi A, Giacomelli C, Bazzichi L. Role for a watersoluble form of CoQ10 in female subjects affected by fibromyalgia. A preliminary study. Clin Exp Rheumatol. 2017;35 Suppl 105:20–27. https:// pubmed.ncbi.nlm.nih.gov/27974102/

101. Cordero MD, Alcocer-Gómez E, de Miguel M, Culic O, Carrión AM, AlvarezSuarez JM, et al. Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia? Antioxid Redox Signal. 2013;19:1356–61. https://pubmed.ncbi.nlm.nih.gov/23458405/

102. Jafari M, Mousavi SM, Asgharzadeh A, Yazdani N. Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart J. 2018;70 Suppl 1:S111–17. https://pubmed.ncbi.nlm.nih.gov/ 30122240/

103. DiNicolantonio JJ, Bhutani J, McCarty MF, O’Keefe JH. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart. 2015;2:e000326. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620231/