104. Sanoobar M, Dehghan P, Khalili M, Azimi A, Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: a double blind randomized clinical trial. Nutr Neurosci. 2016;19:138–43. https:// pubmed.ncbi.nlm.nih.gov/25603363/
105. Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Khodadadi B, Jazayeri S, et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci. 2015;18:169–76. https://pubmed.ncbi.nlm.nih.gov/24621064/
106. Castro-Marrero J, Cordero MD, Segundo MJ, Sáez-Francàs N, Calvo N, Román-Malo L, et al. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid Redox Signal. 2015;22:679–85. https://pubmed.ncbi.nlm.nih.gov/ 25386668/
107. Fukuda S, Nojima J, Kajimoto O, Yamaguti K, Nakatomi Y, Kuratsune H, et al. Ubiquinol-10 supplementation improves autonomic nervous function and cognitive function in chronic fatigue syndrome. Biofactors. 2016;42:431–40. https://pubmed.ncbi.nlm.nih.gov/27125909/
108. Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24:293–99. https://pubmed.ncbi.nlm.nih.gov/18272335/
109. Castro-Marrero J, Sáez-Francàs N, Segundo MJ, Calvo N, Faro M, Aliste L, et al. Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome – a randomized, controlled, double-blind trial. Clin Nutr. 2016;35:826–34. https://pubmed.ncbi.nlm.nih.gov/26212172/
110. Mizuno K, Sasaki AT, Watanabe K, Watanabe Y. Ubiquinol-10 intake is effective in relieving mild fatigue in healthy individuals. Nutrients. 2020;12. http://dx.doi.org/10.3390/nu12061640
111. Sarmiento A, Diaz-Castro J, Pulido-Moran M, Moreno-Fernandez J, Kajarabille N, Chirosa I, et al. Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: a randomized trial. Biofactors. 2016;42:612–22. https://pubmed.ncbi.nlm.nih.gov/27193497/
112. Soto-Urquieta MG, López-Briones S, Pérez-Vázquez V, Saavedra-Molina A, González-Hernández GA, Ramírez-Emiliano J. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice. Biol Res. 2014;47:74. https://pubmed.ncbi.nlm.nih.gov/25723052/
113. de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF. Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv. 2016;34:813–26. https://pubmed.ncbi.nlm.nih.gov/27143655/
114. Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6. http://dx.doi.org/10.3390/foods6100092
115. van Campen C (Linda) MC van C. The effect of curcumin in patients with chronic fatigue syndrome (or) myalgic encephalomyelitis disparate responses in different disease severities. Pharmacovigilance and Pharmacoepidemiology. Edelweiss Publications Inc; 2019;22–27. https:// www.researchgate.net/publication/337628848_The_Effect_of_Curcumin_in _Patients_with_Chronic_Fatigue_Syndrome_or_Myalgic_Encephalomyelitis_Disparate_Responses_in_Different_Disease_Severities
116. van Campen C (linda) MC, Riepma K, Visser FC. The effect of curcumin on patients with chronic fatigue syndrome/myalgic encephalomyelitis: an open label study. IJCM. 2018;09:356–66. https://www.scirp.org/journal/ paperinformation.aspx?paperid=84389
117. Suhett LG, de Miranda Monteiro Santos R, Silveira BKS, Leal ACG, de Brito ADM, de Novaes JF, et al. Effects of curcumin supplementation on sport and physical exercise: a systematic review. Crit Rev Food Sci Nutr. 2021;61:946– 58. https://pubmed.ncbi.nlm.nih.gov/32282223/
118. Jamwal R. Bioavailable curcumin formulations: a review of pharmacokinetic studies in healthy volunteers. J Integr Med. 2018;16:367–74. https://pubmed.ncbi.nlm.nih.gov/30006023/
119. Pauly DF, Pepine CJ. D-Ribose as a supplement for cardiac energy metabolism. J Cardiovasc Pharmacol Ther. 2000;5:249–58. https://pubmed.ncbi.nlm.nih.gov/11150394/
120. Omran H, Illien S, MacCarter D, St Cyr J, Lüderitz B. D-Ribose improves diastolic function and quality of life in congestive heart failure patients: a prospective feasibility study. Eur J Heart Fail. 2003;5:615–19. https://pubmed.ncbi.nlm.nih.gov/14607200/
121. MacCarter D, Vijay N, Washam M, Shecterle L, Sierminski H, St Cyr JA. D-ribose aids advanced ischemic heart failure patients. Int J Cardiol. 2009;137:79–80. https://pubmed.ncbi.nlm.nih.gov/18674831/
122. Pliml W, von Arnim T, Stäblein A, Hofmann H, Zimmer HG, Erdmann E. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet. 1992;340:507–10. https://pubmed.ncbi.nlm.nih.gov/ 1354276/
123. Hellsten Y, Skadhauge L, Bangsbo J. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. Am J Physiol Regul Integr Comp Physiol. 2004;286:R182–88. https://pubmed.ncbi.nlm.nih.gov/14660478/
124. Seifert JG, Brumet A, St Cyr JA. The influence of D-ribose ingestion and fitness level on performance and recovery. J Int Soc Sports Nutr. 2017;14:47. https://pubmed.ncbi.nlm.nih.gov/29296106/
125. Teitelbaum JE, Johnson C, St Cyr J. The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study. J Altern Complement Med. 2006;12:857–62. https://pubmed.ncbi.nlm.nih.gov/17109576/
126. Gebhart B, Jorgenson JA. Benefit of ribose in a patient with fibromyalgia. Pharmacotherapy. 2004;24:1646–48. https://pubmed.ncbi.nlm.nih.gov/ 15537568/
127. Alasbahi RH, Melzig MF. Forskolin and derivatives as tools for studying the role of cAMP. Pharmazie. 2012;67:5–13. https://pubmed.ncbi.nlm.nih.gov/ 22393824/
128. Zhang F, Zhang L, Qi Y, Xu H. Mitochondrial cAMP signaling. Cell Mol Life Sci. 2016;73:4577–90. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5097110/
129. Henderson S, Magu B, Rasmussen C, Lancaster S, Kerksick C, Smith P, et al. Effects of coleus forskohlii supplementation on body composition and hematological profiles in mildly overweight women. J Int Soc Sports Nutr. 2005;2:54–62. https://pubmed.ncbi.nlm.nih.gov/18500958/
130. Godard MP, Johnson BA, Richmond SR. Body composition and hormonal adaptations associated with forskolin consumption in overweight and obese men. Obes Res. 2005;13:1335–43. https://pubmed.ncbi.nlm.nih.gov/ 16129715/
131. Loftus HL, Astell KJ, Mathai ML, Su XQ. Coleus forskohlii extract supplementation in conjunction with a hypocaloric diet reduces the risk factors of metabolic syndrome in overweight and obese subjects: a randomized controlled trial. Nutrients. 2015;7:9508–22. https://pubmed.ncbi.nlm.nih.gov/26593941/
132. Singhal K, Raj N, Gupta K, Singh S. Probable benefits of green tea with genetic implications. J Oral Maxillofac Pathol. 2017;21:107–14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406788/
133. Suzuki Y, Miyoshi N, Isemura M. Health-promoting effects of green tea. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:88–101. https://pubmed.ncbi.nlm.nih.gov/22450537/
134. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin Med. 2010;5:13. https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC2855614/
135. Ortiz-López L, Márquez-Valadez B, Gómez-Sánchez A, Silva-Lucero MDC, Torres-Pérez M, Téllez-Ballesteros RI, et al. Green tea compound epigallocatechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience. 2016;322:208–20. https:// pubmed.ncbi.nlm.nih.gov/26917271/
136. Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Molecules. 2018;23. http://dx.doi.org/10.3390/molecules23061297
137. Babu PVA, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem. 2008;15:1840–50. https://pubmed.ncbi.nlm.nih.gov/ 18691042/
138. Bhardwaj P, Khanna D. Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med. 2013;11:345–53. https://pubmed.ncbi.nlm.nih.gov/23845542/
139. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22:1–7. https://pubmed.ncbi.nlm.nih.gov/21115335/
140. Hursel R, Westerterp-Plantenga MS. Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr. 2013;98:1682S–93S. https://pubmed.ncbi.nlm.nih.gov/24172301/
141. Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes. 2009;33:956–61. https://pubmed.ncbi.nlm.nih.gov/19597519/
142. Cooper R, Morré DJ, Morré DM. Medicinal benefits of green tea: part II. Review of anticancer properties. J Altern Complement Med. 2005;11:639–52. https://pubmed.ncbi.nlm.nih.gov/16131288/
143. Lambert JD. Does tea prevent cancer? Evidence from laboratory and human intervention studies. Am J Clin Nutr. 2013;98:1667S–1675S. https://pubmed.ncbi.nlm.nih.gov/24172300/
144. Park J-H, Bae J-H, Im S-S, Song D-K. Green tea and type 2 diabetes. Integr Med Res. 2014;3:4–10. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5481694/
145. Oliveira MR de, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Epigallocatechin gallate and mitochondria – a story of life and death. Pharmacol Res. 2016;104:70–85. https://pubmed.ncbi.nlm.nih.gov/26731017/
146. Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA, et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal. 2009;11:469–80. https:// pubmed.ncbi.nlm.nih.gov/18754708/