147. Most J, Timmers S, Warnke I, Jocken JW, van Boekschoten M, de Groot P, et al. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. Am J Clin Nutr. 2016;104:215–27. https://pubmed.ncbi.nlm.nih.gov/27194304/
148. Jurgens TM, Whelan AM, Killian L, Doucette S, Kirk S, Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst Rev. 2012;12:CD008650. https://pubmed.ncbi.nlm.nih.gov/23235664/
149. Baladia E, Basulto J, Manera M, Martínez R, Calbet D. [Effect of green tea or green tea extract consumption on body weight and body composition; systematic review and meta-analysis]. Nutr Hosp. 2014;29:479–90. https:// pubmed.ncbi.nlm.nih.gov/24558988/
150. Zhong X, Zhang T, Liu Y, Wei X, Zhang X, Qin Y, et al. Short-term weightcentric effects of tea or tea extract in patients with metabolic syndrome: a meta-analysis of randomized controlled trials. Nutr Diabetes. 2015;5:e160. https://pubmed.ncbi.nlm.nih.gov/26075637/
151. Vázquez Cisneros LC, López-Uriarte P, López-Espinoza A, Navarro Meza M, Espinoza-Gallardo AC, Guzmán Aburto MB. [Effects of green tea and its epigallocatechin (EGCG) content on body weight and fat mass in humans: a systematic review.] Nutr Hosp. 2017;34:731–37. https://pubmed.ncbi.nlm.nih.gov/28627214/
152. Hibi M, Takase H, Iwasaki M, Osaki N, Katsuragi Y. Efficacy of tea catechinrich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: a pooled analysis of 6 human trials. Nutr Res. 2018;55:1–10. https://europepmc.org/article/med/29914623
153. Nguyen PH, Gauhar R, Hwang SL, Dao TT, Park DC, Kim JE, et al. New dammarane-type glucosides as potential activators of AMP-activated protein kinase (AMPK) from Gynostemma pentaphyllum. Bioorg Med Chem. 2011;19:6254–60. https://pubmed.ncbi.nlm.nih.gov/21978948/
154. Lee HS, Lim S-M, Jung JI, Kim SM, Lee JK, Kim YH, et al. Gynostemma pentaphyllum extract ameliorates high-fat diet-induced obesity in C57BL/6N mice by upregulating SIRT1. Nutrients. 2019;11. http://dx.doi.org/10.3390/ nu11102475
155. Choi E-K, Won YH, Kim S-Y, Noh S-O, Park S-H, Jung S-J, et al. Supplementation with extract of Gynostemma pentaphyllum leaves reduces anxiety in healthy subjects with chronic psychological stress: a randomized, double-blind, placebo-controlled clinical trial. Phytomedicine. 2019;52:198–205. https://www.sciencedirect.com/science/article/pii/S094471131830165X
156. Park S-H, Huh T-L, Kim S-Y, Oh M-R, Tirupathi Pichiah PB, Chae S-W, et al. Antiobesity effect of Gynostemma pentaphyllum extract (actiponin): a randomized, double-blind, placebo-controlled trial. Obesity. 2014;22:63–71. https://pubmed.ncbi.nlm.nih.gov/23804546/
157. Huyen VTT, Phan DV, Thang P, Hoa NK, Ostenson CG. Antidiabetic effect of Gynostemma pentaphyllum tea in randomly assigned type 2 diabetic patients. Horm Metab Res. 2010;42:353–7. https://pubmed.ncbi.nlm.nih.gov/20213586/
158. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine – a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7:355–59. https://pubmed.ncbi.nlm.nih.gov/17602868/
159. Pendyala L, Creaven PJ. Pharmacokinetic and pharmacodynamic studies of N-acetylcysteine, a potential chemopreventive agent during a phase I trial. Cancer Epidemiol Biomarkers Prev. 1995;4:245–51. https://pubmed.ncbi.nlm.nih.gov/7606199/
160. Lauterburg BH, Corcoran GB, Mitchell JR. Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo. J Clin Invest. 1983;71:980–91. https:// pubmed.ncbi.nlm.nih.gov/6833497/
161. Pizzorno J. Glutathione! Integr Med. 2014;13:8–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684116/
162. Polyak E, Ostrovsky J, Peng M, Dingley SD, Tsukikawa M, Kwon YJ, et al. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab. 2018;123:449–62. https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC5891356/
163. Aparicio-Trejo OE, Reyes-Fermín LM, Briones-Herrera A, Tapia E, LeónContreras JC, Hernández-Pando R, et al. Protective effects of N-acetylcysteine in mitochondria bioenergetics, oxidative stress, dynamics and S-glutathionylation alterations in acute kidney damage induced by folic acid. Free Radic Biol Med. 2019;130:379–96. https://pubmed.ncbi.nlm.nih.gov/ 30439416/
164. Sandhir R, Sood A, Mehrotra A, Kamboj SS. N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener Dis. 2012;9:145–57. https://pubmed.ncbi.nlm.nih.gov/22327485/
165. Wright DJ, Renoir T, Smith ZM, Frazier AE, Francis PS, Thorburn DR, et al. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Transl Psychiatry. 2015;5:e492. https://pubmed.ncbi.nlm.nih.gov/25562842/
166. Devrim-Lanpir A, Hill L, Knechtle B. How N-acetylcysteine supplementation affects redox regulation, especially at mitohormesis and sarcohormesis level: current perspective. Antioxidants (Basel). 2021;10. http://dx.doi.org/ 10.3390/antiox10020153
167. Faghfouri AH, Zarezadeh M, Tavakoli-Rouzbehani OM, Radkhah N, Faghfuri E, Kord-Varkaneh H, et al. The effects of N-acetylcysteine on inflammatory and oxidative stress biomarkers: a systematic review and meta-analysis of controlled clinical trials. Eur J Pharmacol. 2020;884:173368. https://pubmed.ncbi.nlm.nih.gov/32726657/
168. Ghezzi P. Role of glutathione in immunity and inflammation in the lung. Int J Gen Med. 2011;4:105–13. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3048347/
169. Dröge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc. 2000;59:595–600. https://pubmed.ncbi.nlm.nih.gov/11115795/
170. Bounous G, Molson J. Competition for glutathione precursors between the immune system and the skeletal muscle: pathogenesis of chronic fatigue syndrome. Med Hypotheses. 1999;53:347–49. https://pubmed.ncbi.nlm.nih.gov/10608272/
171. Mikirova N, Casciari J, Hunninghake R. The assessment of the energy metabolism in patients with chronic fatigue syndrome by serum fluorescence emission. Altern Ther Health Med. 2012;18:36–40. https://pubmed.ncbi.nlm.nih.gov/22516851/
172. Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12:e0186459. https://pubmed.ncbi.nlm.nih.gov/29211728/
173. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9:1286. https://pubmed.ncbi.nlm.nih.gov/29599478/
174. Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28:1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/
175. Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108:343–53. https://pubmed.ncbi.nlm.nih.gov/29992272/
176. Dollerup OL, Chubanava S, Agerholm M, Søndergård SD, Altıntaş A, Møller AB, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598:731–54. https://pubmed.ncbi.nlm.nih.gov/ 31710095/
177. Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9:9772. https://pubmed.ncbi.nlm.nih.gov/31278280/
178. Remie CME, Roumans KHM, Moonen MPB, Connell NJ, Havekes B, Mevenkamp J, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112:413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/
179. Li X-T, Chen R, Jin L-M, Chen H-Y. Regulation on energy metabolism and protection on mitochondria of Panax ginseng polysaccharide. Am J Chin Med. 2009;37:1139–52. https://pubmed.ncbi.nlm.nih.gov/19938222/
180. Huang Y, Kwan KKL, Leung KW, Yao P, Wang H, Dong TT, et al. Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents. J Ginseng Res. 2019;43:517–26. https://pubmed.ncbi.nlm.nih.gov/31695560/
181. Jin T-Y, Rong P-Q, Liang H-Y, Zhang P-P, Zheng G-Q, Lin Y. Clinical and preclinical systematic review of Panax ginseng C. A. Mey and its compounds for fatigue. Front Pharmacol. 2020;11:1031. https://pubmed.ncbi.nlm.nih.gov/32765262/
182. Lee N, Lee S-H, Yoo H-R, Yoo HS. Anti-fatigue effects of enzyme-modified ginseng extract: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med. 2016;22:859–64. https://pubmed.ncbi.nlm.nih.gov/27754709/
183. Kim H-G, Cho J-H, Yoo S-R, Lee J-S, Han J-M, Lee N-H, et al. Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebocontrolled trial. PLoS One. Public Library of Science; 2013;8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629193/
184. Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem. 2010;285:142–52. https://pubmed.ncbi.nlm.nih.gov/19861415/