306. Mahmood A, FitzGerald AJ, Marchbank T, Ntatsaki E, Murray D, Ghosh S, et al. Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processes. Gut. 2007;56:168–75. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC1856764/
307. Davison. Zinc carnosine works with bovine colostrum in truncating heavy exercise-induced increase.
308. Suliman NA, Mat Taib CN, Mohd Moklas MA, Adenan MI, Hidayat Baharuldin MT, Basir R. Establishing natural nootropics: recent molecular enhancement influenced by natural nootropic. Evid Based Complement Alternat Med. 2016;2016:4391375. https://pubmed.ncbi.nlm.nih.gov/ 27656235/
309. Lanni C, Lenzken SC, Pascale A, Del Vecchio I, Racchi M, Pistoia F, et al. Cognition enhancers between treating and doping the mind. Pharmacol Res. 2008;57:196–213. https://pubmed.ncbi.nlm.nih.gov/18353672/
310. Malik R, Sangwan A, Saihgal R, Jindal DP, Piplani P. Towards better brain management: nootropics. Curr Med Chem. 2007;14:123–31. https://pubmed.ncbi.nlm.nih.gov/17266573/
311. Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, et al. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: a review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights. 2019;13:1177392819866412. https://pubmed.ncbi.nlm.nih.gov/31391778/
312. Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): an ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys. 2019;676:108153. https://pubmed.ncbi.nlm.nih.gov/31622587/
313. Kwon HJ, Jung HY, Hahn KR, Kim W, Kim JW, Yoo DY, et al. Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus. Lab Anim Res. 2018;34:239–47. https://pubmed.ncbi.nlm.nih.gov/30671111/
314. Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci. 2017;24:111–22. https://www.karger.com/Article/Fulltext/475900
315. Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16:313–26. https://pubmed.ncbi.nlm.nih.gov/23772955/
316. Kumar N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MUR, Venkat Ramana G. Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: a six-week, randomized placebocontrolled trial. Evid Based Complement Alternat Med. 2016;2016:4103423. https://pubmed.ncbi.nlm.nih.gov/27803728/
317. Stough C, Lloyd J, Clarke J, Downey LA, Hutchison CW, Rodgers T, et al. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology. 2001;156:481– 84. https://pubmed.ncbi.nlm.nih.gov/11498727/
318. Stough C, Downey LA, Lloyd J, Silber B, Redman S, Hutchison C, et al. Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial. Phytother Res. 2008;22:1629–34. https://pubmed.ncbi.nlm.nih.gov/18683852/
319. Morgan A, Stevens J. Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. J Altern Complement Med. 2010;16:753–59. https://pubmed.ncbi.nlm.nih.gov/20590480/
320. Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebocontrolled trial. J Altern Complement Med. 2008;14:707–13. https://pubmed.ncbi.nlm.nih.gov/18611150/
321. Peth-Nui T, Wattanathorn J, Muchimapura S, Tong-Un T, Piyavhatkul N, Rangseekajee P, et al. Effects of 12-week Bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid Based Complement Alternat Med. 2012;2012:606424. https://pubmed.ncbi.nlm.nih.gov/23320031/
322. Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract Against AD and Other Neurological Disorders. Neurotherapeutics. 2019;16:666–74. https://pubmed.ncbi.nlm.nih.gov/31376068/
323. Yuan Q, Wang C-W, Shi J, Lin Z-X. Effects of Ginkgo biloba on dementia: an overview of systematic reviews. J Ethnopharmacol. 2017;195:1–9. https:// europepmc.org/article/med/27940086
324. Liu H, Ye M, Guo H. An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer’s patients. Front Pharmacol. 2019;10:1688. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC7047126/
325. Sabaratnam V, Kah-Hui W, Naidu M, Rosie David PR. Neuronal health – can culinary and medicinal mushrooms help? Afr J Tradit Complement Altern Med. 2013;3:62–68. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3924982/
326. Lai P-L, Naidu M, Sabaratnam V, Wong K-H, David RP, Kuppusamy UR, et al. Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int J Med Mushrooms. 2013;15:539–54. https://pubmed.ncbi.nlm.nih.gov/24266378/
327. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, et al. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1994;35:1569–72. https://www.sciencedirect.com/science/article/abs/pii/ S0040403900767608
328. Kawagishi H, Simada A, Shizuki K, Ojima F, Mori H, Okamoto K, et al. Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericum erinaceum. Heterocycl Commun. 1996;2:4561. https://doi.org/10.1515/ HC.1996.2.1.51
329. Mori K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, et al. Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biol Pharm Bull. 2008;31:1727–32. https://pubmed.ncbi.nlm.nih.gov/18758067/
330. Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: a focus on neuroscience and therapy. Curr Neuropharmacol. 2015;13:294–303. https:// pubmed.ncbi.nlm.nih.gov/26411962/
331. Chiu C-H, Chyau C–C, Chen C–C, Lee L-Y, Chen W-P, Liu J-L, et al. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int J Mol Sci. 2018;19. http://dx.doi.org/10.3390/ijms19020341 332. Ibid.
333. Yao W, Zhang J-C, Dong C, Zhuang C, Hirota S, Inanaga K, et al. Effects of amycenone on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav. 2015;136:7–12. https://pubmed.ncbi.nlm.nih.gov/26150007/
334. Chiu. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects.
335. Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. 2018;38:579–93. https://pubmed.ncbi.nlm.nih.gov/ 28623429/
336. Ratto D, Corana F, Mannucci B, Priori EC, Cobelli F, Roda E, et al. Hericium erinaceus improves recognition memory and induces hippocampal and cerebellar neurogenesis in frail mice during aging. Nutrients. 2019;11. http:// dx.doi.org/10.3390/nu11040715
337. Jang H-J, Kim J-E, Jeong KH, Lim SC, Kim SY, Cho K-O. The neuroprotective effect of Hericium erinaceus extracts in mouse hippocampus after pilocarpineinduced status epilepticus. Int J Mol Sci. 2019;20. http://dx.doi.org/10.3390/ ijms20040859
338. Chiu. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects.
339. Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23:367–72. https://pubmed.ncbi.nlm.nih.gov/18844328/
340. Vigna L, Morelli F, Agnelli GM, Napolitano F, Ratto D, Occhinegro A, et al. Hericium erinaceus improves mood and sleep disorders in patients affected by overweight or obesity: could circulating pro-BDNF and BDNF be potential biomarkers? Evid Based Complement Alternat Med. 2019;2019:7861297. https://pubmed.ncbi.nlm.nih.gov/31118969/
341. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24:47–66. https://pubmed.ncbi.nlm.nih.gov/18568054/
342. Igamberdiev AU, Kleczkowski LA. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium. Front Plant Sci. 2015;6:10. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4309032/
343. Pilchova I, Klacanova K, Tatarkova Z, Kaplan P, Racay P. The Involvement of Mg2+ in regulation of cellular and mitochondrial functions. Oxid Med Cell Longev. 2017;2017:6797460. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5516748/
344. Clerc P, Young CA, Bordt EA, Grigore AM, Fiskum G, Polster BM. Magnesium sulfate protects against the bioenergetic consequences of chronic glutamate receptor stimulation. PLoS One. 2013;8:e79982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827425/
345. Lambuk L, Jafri AJA, Arfuzir NNN, Iezhitsa I, Agarwal R, Rozali KNB, et al. Neuroprotective effect of magnesium acetyltaurate against NMDAinduced excitotoxicity in rat retina. Neurotox Res. 2017;31:31–45. https:// onlinelibrary.wiley.com/doi/10.1111/ejn.14662
346. Yasui M, Kihira T, Ota K. Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology. 1992;13:593–600. https://pubmed.ncbi.nlm.nih.gov/1475063/