Еда для энергии. Как победить усталость, зарядить свой мозг и быть активным целый день — страница 37 из 38

347. Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin T, Yuen WK. Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci. 1989;16:310–14. https:// pubmed.ncbi.nlm.nih.gov/2766123/

348. Veronese N, Zurlo A, Solmi M, Luchini C, Trevisan C, Bano G, et al. Magnesium status in Alzheimer’s disease: a systematic review. Am J Alzheimers Dis Other Demen. 2016;31:208–13. https://pubmed.ncbi.nlm.nih.gov/26351088/

349. Andrási E, Igaz S, Molnár Z, Makó S. Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. Magnes Res. 2000;13:189–96. https://pubmed.ncbi.nlm.nih.gov/11008926/

350. Glick JL. Dementias: the role of magnesium deficiency and an hypothesis concerning the pathogenesis of Alzheimer’s disease. Med Hypotheses. 1990;31:211–25. https://pubmed.ncbi.nlm.nih.gov/2092675/

351. Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, et al. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol Brain. 2014;7:65. https://pubmed.ncbi.nlm.nih.gov/25213836/

352. Slutsky I, Abumaria N, Wu L-J, Huang C, Zhang L, Li B, et al. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010;65:165–77. https://pubmed.ncbi.nlm.nih.gov/20152124/

353. Uysal N, Kizildag S, Yuce Z, Guvendi G, Kandis S, Koc B, et al. Timeline (bioavailability) of magnesium compounds in hours: which magnesium compound works best? Biol Trace Elem Res. 2019;187:128–36. https:// pubmed.ncbi.nlm.nih.gov/29679349/

354. Ates M, Kizildag S, Yuksel O, Hosgorler F, Yuce Z, Guvendi G, et al. Dosedependent absorption profile of different magnesium compounds. Biol Trace Elem Res. 2019;192:244–51. https://pubmed.ncbi.nlm.nih.gov/30761462/

355. Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17:481–93. https://pubmed.ncbi.nlm.nih.gov/20378318/

356. Panossian A, Hamm R, Wikman G, Efferth T. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine. 2014;21:1325–48. https://pubmed.ncbi.nlm.nih.gov/25172797/

357. Edwards D, Heufelder A, Zimmermann A. Therapeutic effects and safety of Rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms— results of an open-label study. Phytother Res. 2012;26:1220–25. https:// pubmed.ncbi.nlm.nih.gov/22228617/

358. Lekomtseva Y, Zhukova I, Wacker A. Rhodiola rosea in subjects with prolonged or chronic fatigue symptoms: results of an open-label clinical trial. Complement Med Res. 2017;24:46–52. https://pubmed.ncbi.nlm.nih.gov/28219059/

359. Kasper S, Dienel A. Multicenter, open-label, exploratory clinical trial with Rhodiola rosea extract in patients suffering from burnout symptoms. Neuropsychiatr Dis Treat. 2017;13:889–98. https://pubmed.ncbi.nlm.nih.gov/28367055/

360. Spasov AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine. 2000;7:85–89. https://pubmed.ncbi.nlm.nih.gov/ 10839209/

361. Shevtsov VA, Zholus BI, Shervarly VI, Vol’skij VB, Korovin YP, Khristich MP, et al. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine. 2003;10:95–105. https://pubmed.ncbi.nlm.nih.gov/ 12725561/

362. Olsson EM, von Schйele B, Panossian AG. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 2009;75:105–12. https://pubmed.ncbi.nlm.nih.gov/ 19016404/

363. Serbinova E, Kagan V, Han D, Packer L. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med. 1991;10:263–75. https:// pubmed.ncbi.nlm.nih.gov/1649783/

364. Serbinova EA, Packer L. Antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Methods Enzymol. 1994;234:354–66. https://pubmed.ncbi.nlm.nih.gov/7808307/

365. Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE, et al. Structural and dynamic membrane properties of alpha-tocopherol and alphatocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry. 1993;32:10692–99. https://pubmed.ncbi.nlm.nih.gov/8399214/

366. Chan AC. Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol. 1993;71:725–31. https://pubmed.ncbi.nlm.nih.gov/8313238/

367. Patel V, Rink C, Gordillo GM, Khanna S, Gnyawali U, Roy S, et al. Oral tocotrienols are transported to human tissues and delay the progression of the model for end-stage liver disease score in patients. J Nutr. 2012;142:513–19. https://pubmed.ncbi.nlm.nih.gov/22298568/

368. Sen CK, Khanna S, Roy S. Tocotrienol: the natural vitamin E to defend the nervous system? Ann N Y Acad Sci. 2004;1031:127–42. https://pubmed.ncbi.nlm.nih.gov/15753140/

369. Chin K-Y, Tay SS. A review on the relationship between Tocotrienol and Alzheimer disease. Nutrients. 2018;10:881. http://dx.doi.org/10.3390/ nu10070881

370. Gopalan Y, Shuaib IL, Magosso E, Ansari MA, Abu Bakar MR, Wong JW, et al. Clinical investigation of the protective effects of palm vitamin E tocotrienols on brain white matter. Stroke. 2014;45:1422–28. https://pubmed.ncbi.nlm.nih.gov/24699052/

371. Modi KP, Patel NM, Goyal RK. Estimation of L-dopa from Mucuna pruriens LINN and formulations containing M. pruriens by HPTLC method. Chem Pharm Bull. 2008;56:357–59. https://pubmed.ncbi.nlm.nih.gov/18310948/

372. Hardebo JE, Owman C. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann Neurol. 1980;8:1–31. https://pubmed.ncbi.nlm.nih.gov/6105837/

373. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508:1–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065393/

374. Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T. A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord. 2010;16:458–65. https://pubmed.ncbi.nlm.nih.gov/20570206/

375. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, et al. Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry. 2004;75:1672–77. https://pubmed.ncbi.nlm.nih.gov/15548480/

376. Cilia R, Laguna J, Cassani E, Cereda E, Pozzi NG, Isaias IU, et al. Mucuna pruriens in Parkinson disease: a double-blind, randomized, controlled, crossover study. Neurology. 2017;89:432–38. https://pubmed.ncbi.nlm.nih.gov/28679598/

377. Cilia R, Laguna J, Cassani E, Cereda E, Raspini B, Barichella M, et al. Daily intake of Mucuna pruriens in advanced Parkinson’s disease: a 16-week, noninferiority, randomized, crossover, pilot study. Parkinsonism Relat Disord. 2018;49:60–66. https://pubmed.ncbi.nlm.nih.gov/29352722/

378. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137:1539S–1547S; discussion 1548S. https://pubmed.ncbi.nlm.nih.gov/17513421/

379. Goldstein DS. Catecholamines 101. Clin Auton Res. 2010;20:331–52. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046107/

380. Lehnert H, Reinstein DK, Strowbridge BW, Wurtman RJ. Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res. 1984;303:215–23. https://www.sciencedirect.com/ science/article/abs/pii/0006899384912071

381. Hase A, Jung SE, aan het Rot M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav. 2015;133:1–6. https://pubmed.ncbi.nlm.nih.gov/25797188/

382. Jongkees BJ, Hommel B, Kühn S, Colzato LS. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands – a review. J Psychiatr Res. 2015;70:50–57. https:// pubmed.ncbi.nlm.nih.gov/26424423/

383. Abbiati G, Fossati T, Lachmann G, Bergamaschi M, Castiglioni C. Absorption, tissue distribution and excretion of radiolabelled compounds in rats after administration of [14C]-L-alpha-glycerylphosphorylcholine. Eur J Drug Metab Pharmacokinet. 1993;18:173–80. https://link.springer.com/ article/10.1007/BF03188793

384. Parnetti L, Mignini F, Tomassoni D, Traini E, Amenta F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: ineffective approaches or need for re-evaluation? J Neurol Sci. 2007;257:264–69. https://pubmed.ncbi.nlm.nih.gov/17331541/ 385. Ibid.

386. Ziegenfuss T, Landis J, Hofheins J. Acute supplementation with alphaglycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. J Int Soc Sports Nutr. 2008;5 (suppl 1):P15. https://jissn.biomedcentral.com/ articles/10.1186/1550-2783-5-S1-P15

387. Bellar D, LeBlanc NR, Campbell B. The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength. J Int Soc Sports Nutr. 2015;12:42. https://pubmed.ncbi.nlm.nih.gov/26582972/

388. Marcus L, Soileau J, Judge LW, Bellar D. Evaluation of the effects of two doses of alpha glycerylphosphorylcholine on physical and psychomotor performance. J Int Soc Sports Nutr. 2017;14:39. https://jissn.biomedcentral.com/articles/10.1186/s12970-017-0196-5

389. Cruse JL. The acute effects of alpha-GPC on hand grip strength, jump height, power output, mood, and reaction-time in recreationally trained, collegeaged individuals [Master of Science]. Eastern Kentucky University; 2018. https://encompass.eku.edu//etd/518