347. Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin T, Yuen WK. Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci. 1989;16:310–14. https:// pubmed.ncbi.nlm.nih.gov/2766123/
348. Veronese N, Zurlo A, Solmi M, Luchini C, Trevisan C, Bano G, et al. Magnesium status in Alzheimer’s disease: a systematic review. Am J Alzheimers Dis Other Demen. 2016;31:208–13. https://pubmed.ncbi.nlm.nih.gov/26351088/
349. Andrási E, Igaz S, Molnár Z, Makó S. Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. Magnes Res. 2000;13:189–96. https://pubmed.ncbi.nlm.nih.gov/11008926/
350. Glick JL. Dementias: the role of magnesium deficiency and an hypothesis concerning the pathogenesis of Alzheimer’s disease. Med Hypotheses. 1990;31:211–25. https://pubmed.ncbi.nlm.nih.gov/2092675/
351. Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, et al. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol Brain. 2014;7:65. https://pubmed.ncbi.nlm.nih.gov/25213836/
352. Slutsky I, Abumaria N, Wu L-J, Huang C, Zhang L, Li B, et al. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010;65:165–77. https://pubmed.ncbi.nlm.nih.gov/20152124/
353. Uysal N, Kizildag S, Yuce Z, Guvendi G, Kandis S, Koc B, et al. Timeline (bioavailability) of magnesium compounds in hours: which magnesium compound works best? Biol Trace Elem Res. 2019;187:128–36. https:// pubmed.ncbi.nlm.nih.gov/29679349/
354. Ates M, Kizildag S, Yuksel O, Hosgorler F, Yuce Z, Guvendi G, et al. Dosedependent absorption profile of different magnesium compounds. Biol Trace Elem Res. 2019;192:244–51. https://pubmed.ncbi.nlm.nih.gov/30761462/
355. Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17:481–93. https://pubmed.ncbi.nlm.nih.gov/20378318/
356. Panossian A, Hamm R, Wikman G, Efferth T. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine. 2014;21:1325–48. https://pubmed.ncbi.nlm.nih.gov/25172797/
357. Edwards D, Heufelder A, Zimmermann A. Therapeutic effects and safety of Rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms— results of an open-label study. Phytother Res. 2012;26:1220–25. https:// pubmed.ncbi.nlm.nih.gov/22228617/
358. Lekomtseva Y, Zhukova I, Wacker A. Rhodiola rosea in subjects with prolonged or chronic fatigue symptoms: results of an open-label clinical trial. Complement Med Res. 2017;24:46–52. https://pubmed.ncbi.nlm.nih.gov/28219059/
359. Kasper S, Dienel A. Multicenter, open-label, exploratory clinical trial with Rhodiola rosea extract in patients suffering from burnout symptoms. Neuropsychiatr Dis Treat. 2017;13:889–98. https://pubmed.ncbi.nlm.nih.gov/28367055/
360. Spasov AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine. 2000;7:85–89. https://pubmed.ncbi.nlm.nih.gov/ 10839209/
361. Shevtsov VA, Zholus BI, Shervarly VI, Vol’skij VB, Korovin YP, Khristich MP, et al. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine. 2003;10:95–105. https://pubmed.ncbi.nlm.nih.gov/ 12725561/
362. Olsson EM, von Schйele B, Panossian AG. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 2009;75:105–12. https://pubmed.ncbi.nlm.nih.gov/ 19016404/
363. Serbinova E, Kagan V, Han D, Packer L. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med. 1991;10:263–75. https:// pubmed.ncbi.nlm.nih.gov/1649783/
364. Serbinova EA, Packer L. Antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Methods Enzymol. 1994;234:354–66. https://pubmed.ncbi.nlm.nih.gov/7808307/
365. Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE, et al. Structural and dynamic membrane properties of alpha-tocopherol and alphatocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry. 1993;32:10692–99. https://pubmed.ncbi.nlm.nih.gov/8399214/
366. Chan AC. Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol. 1993;71:725–31. https://pubmed.ncbi.nlm.nih.gov/8313238/
367. Patel V, Rink C, Gordillo GM, Khanna S, Gnyawali U, Roy S, et al. Oral tocotrienols are transported to human tissues and delay the progression of the model for end-stage liver disease score in patients. J Nutr. 2012;142:513–19. https://pubmed.ncbi.nlm.nih.gov/22298568/
368. Sen CK, Khanna S, Roy S. Tocotrienol: the natural vitamin E to defend the nervous system? Ann N Y Acad Sci. 2004;1031:127–42. https://pubmed.ncbi.nlm.nih.gov/15753140/
369. Chin K-Y, Tay SS. A review on the relationship between Tocotrienol and Alzheimer disease. Nutrients. 2018;10:881. http://dx.doi.org/10.3390/ nu10070881
370. Gopalan Y, Shuaib IL, Magosso E, Ansari MA, Abu Bakar MR, Wong JW, et al. Clinical investigation of the protective effects of palm vitamin E tocotrienols on brain white matter. Stroke. 2014;45:1422–28. https://pubmed.ncbi.nlm.nih.gov/24699052/
371. Modi KP, Patel NM, Goyal RK. Estimation of L-dopa from Mucuna pruriens LINN and formulations containing M. pruriens by HPTLC method. Chem Pharm Bull. 2008;56:357–59. https://pubmed.ncbi.nlm.nih.gov/18310948/
372. Hardebo JE, Owman C. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann Neurol. 1980;8:1–31. https://pubmed.ncbi.nlm.nih.gov/6105837/
373. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508:1–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065393/
374. Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T. A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord. 2010;16:458–65. https://pubmed.ncbi.nlm.nih.gov/20570206/
375. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, et al. Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry. 2004;75:1672–77. https://pubmed.ncbi.nlm.nih.gov/15548480/
376. Cilia R, Laguna J, Cassani E, Cereda E, Pozzi NG, Isaias IU, et al. Mucuna pruriens in Parkinson disease: a double-blind, randomized, controlled, crossover study. Neurology. 2017;89:432–38. https://pubmed.ncbi.nlm.nih.gov/28679598/
377. Cilia R, Laguna J, Cassani E, Cereda E, Raspini B, Barichella M, et al. Daily intake of Mucuna pruriens in advanced Parkinson’s disease: a 16-week, noninferiority, randomized, crossover, pilot study. Parkinsonism Relat Disord. 2018;49:60–66. https://pubmed.ncbi.nlm.nih.gov/29352722/
378. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137:1539S–1547S; discussion 1548S. https://pubmed.ncbi.nlm.nih.gov/17513421/
379. Goldstein DS. Catecholamines 101. Clin Auton Res. 2010;20:331–52. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046107/
380. Lehnert H, Reinstein DK, Strowbridge BW, Wurtman RJ. Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res. 1984;303:215–23. https://www.sciencedirect.com/ science/article/abs/pii/0006899384912071
381. Hase A, Jung SE, aan het Rot M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav. 2015;133:1–6. https://pubmed.ncbi.nlm.nih.gov/25797188/
382. Jongkees BJ, Hommel B, Kühn S, Colzato LS. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands – a review. J Psychiatr Res. 2015;70:50–57. https:// pubmed.ncbi.nlm.nih.gov/26424423/
383. Abbiati G, Fossati T, Lachmann G, Bergamaschi M, Castiglioni C. Absorption, tissue distribution and excretion of radiolabelled compounds in rats after administration of [14C]-L-alpha-glycerylphosphorylcholine. Eur J Drug Metab Pharmacokinet. 1993;18:173–80. https://link.springer.com/ article/10.1007/BF03188793
384. Parnetti L, Mignini F, Tomassoni D, Traini E, Amenta F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: ineffective approaches or need for re-evaluation? J Neurol Sci. 2007;257:264–69. https://pubmed.ncbi.nlm.nih.gov/17331541/ 385. Ibid.
386. Ziegenfuss T, Landis J, Hofheins J. Acute supplementation with alphaglycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. J Int Soc Sports Nutr. 2008;5 (suppl 1):P15. https://jissn.biomedcentral.com/ articles/10.1186/1550-2783-5-S1-P15
387. Bellar D, LeBlanc NR, Campbell B. The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength. J Int Soc Sports Nutr. 2015;12:42. https://pubmed.ncbi.nlm.nih.gov/26582972/
388. Marcus L, Soileau J, Judge LW, Bellar D. Evaluation of the effects of two doses of alpha glycerylphosphorylcholine on physical and psychomotor performance. J Int Soc Sports Nutr. 2017;14:39. https://jissn.biomedcentral.com/articles/10.1186/s12970-017-0196-5
389. Cruse JL. The acute effects of alpha-GPC on hand grip strength, jump height, power output, mood, and reaction-time in recreationally trained, collegeaged individuals [Master of Science]. Eastern Kentucky University; 2018. https://encompass.eku.edu//etd/518