Единство — страница 1 из 8

ВВЕДЕНИЕ

Наука едина потому,

что едина природа.

Автор

Природа… Все существующее входит в это всеобъемлющее понятие. В том числе человек, познающий окружающий мир.

История человечества, развитие его познавательной способности сопровождались расширением и уточнением научных понятий, в том числе такого фундаментального понятия, как природа.

Вряд ли можно согласиться с мнением некоторых экологов, что «природа» — это просто синоним понятия «дикая природа», некая первозданная среда, еще не испытавшая воздействия человека, не тронутая земледелием, животноводством, промышленностью.

В древности человек не отделял себя от окружающего мира, не противопоставлял себя и себе подобных остальной природе. Тогда каждый ученый изучал все и учил всему. Но постепенно, по мере увеличения объема знаний произошло разделение интересов. Оно совпало с формированием рабовладельческих обществ. Неравенство между людьми породило неравенство профессий. Возникли понятия высших и низших наук.

Высшие науки — те, что мы теперь относим к гуманитарным областям знания и искусству, а также грамматика — продукт «чистого» разума, стихосложение, риторика. Геометрия и арифметика родились на почве реальности, когда землемер размечал участки земли шагами, а торговец по пальцам считал товар. Постепенно они стали даже более абстрактными, чем правила стихосложения, и были зачислены в ранг высших наук.

Медицина, механика, архитектура и то, что теперь относится к естественным наукам, наукам о природе, и к технике, были провозглашены низшими науками, занятием, недостойным свободного гражданина. Это считалось уделом рабов и простолюдинов, «пошлым ремеслом».

Лишь на заре эпохи Возрождения вновь появился универсал, который своим примером мог бы разрушить эти предрассудки, ликвидировать искусственные границы между областями знания. Леонардо да Винчи не получил систематического образования, но достиг величайших высот во всех областях науки и в искусстве. Но и он не уничтожил предвзятости. Дифференциация наук и специализация ученых все более углублялись. Коперник, Браге, Кеплер посвятили себя астрономии. Тарталья, Виетта и другие — математике.

Последним универсалом был Ломоносов, одинаково преуспевавший в естественных и гуманитарных науках, в технике и литературе, в организации науки.

К тому времени величайшие ученые стали на путь специализации. Галилей занимался преимущественно механикой и астрономией. Ньютон ограничился физикой, математикой и оптикой. Гюйгенс — механикой и оптикой. Лейбниц отдавал все силы математике. Лавуазье — химии…

Так оно шло и породило горькую поговорку: «Узкий специалист знает всё ни о чем, а широкий специалист не знает ничего, но обо всем».

В наши дни стало очевидно, что искусственные границы препятствуют развитию знаний. Природа многогранна, ее можно и нужно изучать с различных сторон. Но она едина, поэтому едина и наука. Все попытки пренебречь таким единством тормозят прогресс.

Книга «Единство» ставит целью показать наиболее яркие перекрестные связи между различными дисциплинами, связи, которые привели к важнейшим открытиям современности.

Читатель узнает, как периодическая таблица химических элементов — величайшее творение Менделеева (посвятившего себя химии, в его время весьма обособленной, специальной науке) — оказалась неразрывно связанной с космологией и ядерной физикой, термодинамикой и теорией элементарных частиц. Творец периодической таблицы элементов, выражающей один из основополагающих законов природы, не мог знать, куда приведет дорога его поисков. Не мог предположить и того, что не химики, а физики XX века подарят миру новый элемент и назовут его менделевием. И это новое вещество, как и другие неведомые химикам элементы тяжелее урана — кюрий, эйнштейний, фермий, лоуренсий, курчатовий, нильсборий, — будет получено искусственно. Но не с помощью химической реакции, этого давнего, испытанного инструмента в получении новых веществ, а «изготовлено» на основе рекомендаций квантовой физики. Мечта алхимиков осуществилась…

Читатель наверняка будет удивлен, узнав, что многие важные сведения о свойствах элементарных частиц сегодня получены не физиками на основе экспериментов с этими частицами, а космологами, сумевшими заглянуть в далекое прошлое, отстоящее от нас на миллиарды лет. Там они познакомились с биографией кирпичиков мироздания.

Мы сосредоточимся на космологии, науке о Вселенной, имеющей огромное философское значение и одновременно превратившейся в своеобразную физическую лабораторию.

Говоря о лаборатории, обычно имеют в виду помещение или ряд помещений, оборудованных для проведения исследований в какой-либо конкретной области знания — физике, химии, биологии, оптике, генетике… И вдруг в качестве лабораторного полигона одна из наук — космология?

Первоначальной задачей космологии было изучение строения Вселенной. Она основывалась на материале наблюдательной астрономии, изучающей положение и движение небесных тел. Затем, после создания спектрального анализа и рождения астрофизики, космология приобрела возможность изучать эволюцию Вселенной. Для этого пришлось привлечь различные разделы физики и химии, ибо развитие Вселенной складывается из множества взаимосвязанных процессов, в которых участвуют элементарные частицы, атомы и молекулы.

С середины XX века выяснилось, что космология — наука о макрокосмосе, рассматриваемом во всей его безграничности, — тесным образом связана с наукой о микрокосмосе, изучающей процессы, протекающие в глубинах атомных ядер.

Космология оказалась способной не только объяснить то, что ранее считалось непонятным, но и делать предсказания. И эти предсказания подтверждаются специальными опытами. Такая способность — один из главных критериев правильности научной теории.

Совсем недавно, когда двадцатый век вступил в свою третью четверть, космология достигла столь высокого уровня развития, что с ее помощью можно проверять

Предсказания теории элементарных частиц — например, о свойствах ядерных частиц, которые нельзя подвергнуть контролю в наилучших современных лабораториях и в лабораториях обозримого будущего.

Так космология стала лабораторией физики.

Мы встретимся и с другими убедительными подтверждениями единства науки, изучающей природу.

Рассматривая под этим углом зрения важнейшие достижения сегодняшнего дня, нельзя обойти вниманием удивительное явление, получившее название «странный аттрактор». Впервые он появился перед учеными при изучении атмосферы. В нем как бы воплотились древние злые духи, стремящиеся ввергнуть мир в хаос, — вот когда стало ясно, почему так трудна задача предсказания погоды!

Встретившись со странным аттрактором в земной атмосфере, ученые сумели разглядеть его козни в самых разнообразных явлениях природы и в некоторых технических системах. Он появлялся почти во всех случаях, ранее казавшихся следствием неправильных расчетов или случайных воздействий. Выяснилось, что он повинен в опасных для человека нарушениях сердечного ритма, вызывает фибрилляции, с которыми так трудно бороться медикам. Нарушает работу некоторых машин и радиоприемников. Словом, сфера его деятельности обширна и затрагивает интересы медицины и метеорологии, термодинамики и биологии, радиотехники и теории механизмов и машин…

Осознав нрав странного аттрактора, представители столь полярных наук, объединившись, сумели укротить его и поставить на службу человечеству. Однако подробно речь о нем впереди.

Познакомившись с важнейшими открытиями современности, читатель подойдет к пониманию важнейшего положения материалистической философии о единстве законов, действующих в природе и отраженных в науке, этом слепке с законов природы. Читатель убедится: в единстве законов, общих для самых различных явлений природы, заключены необозримые резервы для прогресса науки и техники.

Сегодня набирает силу особый метод исследования природы, основанный на глубокой общности процессов, внешне весьма разных, относящихся к разнообразным областям науки, но допускающих описание их свойств при помощи сходных математических уравнений.

Ученый, воспринявший этот метод мышления и обладающий опытом в одной из конкретных областей знания, способен быстро и успешно входить в другие, часто весьма удаленные научные проблемы и более легко получать в них важные результаты.

Книга «Единство» ставит целью воспитание современного научного мышления у молодого человека, только вступающего в самостоятельную жизнь, чтобы помочь ему шагнуть выше и дальше предшественников на пути прогресса.

ВЕЛИКИЙ ЗАКОН

Главная цель естественных наук — раскрывать единство сил природы.

Л. Больцман

ГЛАВА 1Симметрия и химия

Симметрия и химия

Когда речь заходит о симметрии, в памяти сразу возникают четкие формы листьев, цветов, кружевных узоров, архитектурных сооружений, словом, бросающаяся в глаза внешняя симметрия предметов. Мало кто задумывается о том, что симметрия здания зачастую следствие многократного повторения одинаковых квартир. А симметрия кристалла основывается на внутреннем порядке взаимного расположения атомов, ионов, молекул.

Законы симметрии играют ведущую роль в понимании строения веществ. Пожалуй, первым, осознавшим, что внешний порядок в природных явлениях определяется непознанным внутренним порядком, был великий химик Дмитрий Иванович Менделеев.

Знание не является эквивалентом науки. Началом превращения знания в науку, в научное знание, является классификация — упорядочение признаков предметов и явлений. Далее идет выявление связи между признаками и сущностью.

Если придерживаться этой точки зрения, то первый шаг, превращающий химию в науку, сделал гениальный универсал Михаил Васильевич Ломоносов. Он понял, что частицы сложных тел — корпускулы — состоят из элементов — молекул, а те в свою очередь образованы первичными элементами — атомами. Ломоносов сумел заглянуть в глубинную суть вещей, сформулировал закон сохранения вещества и закон сохранения движения. Борясь с теорией теплорода, он пришел к кинетической теории теплоты. Существенный вклад в классификацию химических элементов сделал французский ученый Антуан Лоран Лавуазье. Один из основателей химии, он классифицировал свыше тридцати веществ по аналогиям их химических свойств. Но он не утверждал, что все они простые вещества. Нет, он предвидел в будущем, что «земли» (окислы) перестанут причислять к простым элементам потому, что, как он писал, «они не обладают стремлением к соединению с кислородом, и я склонен думать, что… они уже пересыщены им».

Лавуазье независимо от Ломоносова пришел к закону сохранения вещества и, несомненно, мог пойти много дальше. Но… он занимал должность генерального откупщика, и во время Французской буржуазной революции его гильотинировали как врага и грабителя народа.

Следующий вклад в классификацию химических элементов сделал в 1829 году И. В. Дёберейнер, друг Гёте, фабрикант химических товаров, которого так увлекла тайна, скрытая в изготавливаемых на его предприятиях товарах, что он стал профессором химии. Он разложил своеобразный пасьянс из химических элементов: сгруппировал элементы по три с учетом аналогии химических свойств и расположил их в порядке увеличения атомного веса. И во многих случаях обнаружил поразительную закономерность: атомный вес среднего элемента близок к среднему арифметическому от атомных весов соседей. Такие триады составляют сера, селен, теллур; хлор, бром и йод; кальций, стронций и барий. Конечно же, тут проявилась какая-то закономерность. Эта «игра» в элементы вдохновила многих химиков. Известны и другие попытки подобной классификации.

Решающий шаг в этом увлекательном деле сделал петербургский профессор химии Менделеев. Он не ограничился классификацией элементов. Но попытался вскрыть связь их признаков со свойствами, определяемыми внутренним строением. Ему удалось установить неведомую ранее периодичность изменения физических и химических свойств элементов по мере увеличения их атомного веса. На этой основе он сформулировал закон, позволивший обнаруживать и исправлять ошибки в общепринятых в то время значениях атомных весов некоторых элементов. Опираясь на этот закон, он предсказал существование и даже свойства ряда элементов, в то время еще неизвестных.

К 1869 году Менделеев продвинулся в понимании значения периодического изменения свойств химических элементов так далеко, что решил опубликовать полученные результаты. Название статьи «Соотношение свойств с атомным весом элементов» отражало ее основное содержание. Главный результат работы выражен следующим образом: «Элементы, расположенные по величине их атомного веса, представляют явную периодичность свойств», речь идет о таких химических свойствах, как валентность, и таких физических свойствах, как атомные объемы элементов и удельные веса простых веществ. Под простыми веществами, конечно, понимаются те, что содержат только один элемент. Уже в первом варианте таблицы элементов Менделеев оставил пустые места. Там, по его глубокому убеждению, должны стоять еще не открытые элементы. Он также изменил расположение в таблице кобальта и никеля, теллура и йода, считая, что их атомные веса определены ошибочно, потому что они не соответствуют свойствам этих элементов. Последующие более точные измерения подтвердили правильность его мнения.

Менделеев не ограничился тем, что выявил закон. Он продолжал работать над уточнением периодической системы элементов. Однажды он осознал, что химические свойства элементов повторяются: каждый восьмой и восемнадцатый элемент обладают аналогичными свойствами. Проверив свою догадку, он убедился в том, что существуют два периода (8 и 18) повторения свойств элементов.

В 1871 году Менделеев публикует статью, содержащую уточненную таблицу периодических свойств элементов. Он расположил их в восьми столбцах и одиннадцати строках. Эта таблица давала ключ к пониманию химических свойств известных элементов. Но этим не исчерпывались полученные результаты. В той же статье прозорливый ученый очень подробно описал свойства нескольких неизвестных элементов. Трем из них он дал названия: экабор, экаалюминий и экасилиций. Приставка «эка» указывала на аналогию с элементами, стоящими в таблице сверху. Тогда же Менделеев описал химические свойства неизвестных в то время аналогов марганца, теллура, цезия, бария, тантала. Кроме того, он исправил атомные веса и валентности некоторых элементов, руководствуясь тем, что прежние величины противоречат закону, выраженному его таблицей. Так, он приписал индию валентность 3 вместо принятой прежде 2. Установил, что атомный вес индия вдвое превышает принятый, и потому поместил его в VI группу элементов.

Догадки русского ученого вдохновили химиков-экспериментаторов из разных лабораторий мира на поиск новых веществ. Вскоре, в 1875 году, француз де Буабодран открыл предсказанный Менделеевым экаалюминий и дал ему название галлий. Швед Л. Нилсон в 1879 году выделил скандий, по свойствам совпавший с экабором. А в 1886 году выдающийся химик-аналитик из Саксонии К. Винклер получил германий. Характеристики этого нового элемента с поразительной точностью совпали с характеристиками экасилиция.

Вот как выглядели характеристики предсказанного и открытого элемента. В скобках — числа, предсказанные Менделеевым для экасилиция. Рядом — полученные Винклером для германия. Атомный вес: (72) и 72,60. Валентность: (4 и ниже), 4 и 2. Атомный вес: (13) и 13,5. Удельный вес (5,5) и 5,36. Свойства высшего окисла: молекулярный объем (22) и 22,2; удельный вес (4,7) и 4,703. Свойства высшего хлорида: удельный вес (1,9) и 1,874. Свойства типичного металлоорганического соединения: удельный вес (0,96) и 0,99; температура кипения (160°) и 163,5°. Расхождения не превышали погрешностей измерений. Предвидение Менделеева оказалось точным.

Этот пример показывает, что периодическая система Менделеева действительно отражает глубокий закон природы. И, как надлежит истинному научному закону, позволяет точно предсказывать количественные результаты будущих экспериментальных исследований.

Однако нельзя сказать, что у химиков вовсе не было хлопот с размещением в таблице вновь открываемых веществ.

В 1894 году англичане лорд Роберт Джон Рэлей (сын знаменитого физика Джона Уильяма Рэлея) и Уильям Рамзай обнаружили в воздухе неизвестный ранее странный газ. Он не вступал в химическое соединение ни с одним из известных элементов. Для нового газа, названного вследствие его химической инертности аргоном, не оказалось места в периодической системе элементов. Это вызвало волнение среди химиков. К тому времени все признали периодический закон Менделеева и с успехом пользовались его таблицей в работе. И вот странный случай: газ существует, а места ему в таблице элементов нет. Как это понять?

Через год снова возник тот же, вопрос.

В 1895 году Рамзай выделил из урановой смоляной руды неизвестный ранее газ, а спектральный анализ отождествил его с таинственным элементом, обнаруженным еще в 1868 году в спектре Солнца. Замешательство среди химиков еще более усилилось. Следует отметить, что и до Рамзая этот газ обнаруживали в некоторых горных породах, но эти сообщения каждый раз подвергали сомнению. Авторитет Рамзая утвердил существование нового элемента. Его назвали гелием в память о его «солнечном» происхождении.

Рамзай пошел дальше. Вот что мы читаем в его статье: «По образцу нашего учителя Менделеева я описал, поскольку возможно было, ожидаемые свойства и предполагаемые отношения газообразного элемента, который должен был бы заполнить пробел между гелием и аргоном». Должен был бы… Но в таблице для него не было места.

Однако газ, обладающий свойствами, предсказанными Рамзаем по рецепту Менделеева, был в 1898 году выделен им при участии М. В. Трейверса в результате разделения по фракциям большого количества жидкого воздуха. Его свойства соответствовали ожиданиям Рамзая, основанным на периодическом законе Менделеева. Мы знаем этот газ под названием неон. Вскоре ими были тем же методом выделены и другие газы, более тяжелые, чем аргон, — криптон и ксенон. И им не было места в таблице!

Вновь открытые газы походили друг на друга: они были инертными, не способными к участию в известных ученым химических реакциях. Их так и назвали — инертными газами. Одно время их называли благородными газами. Это открытие привело к расширению периодической системы Менделеева. В нее по предложению Рамзая ввели нулевую группу. Название продиктовано тем, что инертность вновь открытых газов казалось удобным связать с нулевой валентностью. Нулевую группу поместили перед группой наиболее активных металлов щелочного ряда.

Забегая вперед, сделаем отступление для тех, кто помнит, что в современном варианте таблицы Менделеева нет нулевой группы. Дальнейшие исследования связи химических свойств атомов со строением их электронных оболочек выяснили причину того, почему после первого периода, содержащего только два элемента — водород и гелий, следуют второй и третий периоды, содержащие по восемь элементов, а затем периодичность химических свойств делает скачок: период «восемь» заменяется периодом «восемнадцать».

В результате для сохранения идеи, заложенной Менделеевым в его таблицу, пришлось подразделить каждую из групп (вертикальных столбцов таблицы) на две подгруппы — левую и правую. В левых подгруппах помещены все элементы первых трех периодов и первые десять элементов каждого из больших периодов. Последние восемь элементов больших периодов располагают в правых подгруппах. Некоторую особенность представляет восьмая группа. В ее левой подгруппе расположены тройки: железо, кобальт, никель, а под ними рутений, радий, палладий и осмий, иридий, платина. Правую подгруппу восьмой группы занимают инертные газы.

Возвратимся, однако, к хронологии. В периодической таблице Менделеева еще оставались пустые места, указанные Менделеевым. Путеводной нитью при поиске новых элементов (путем химического выделения из природных соединений) служили их свойства, предсказываемые на основе таблицы Менделеева. Последним элементом, обнаруженным таким путем, был элемент, свойства которого определяются семьдесят пятой клеткой таблицы. Он был назван рением.

Далее поиск еще неизвестных элементов вступил в новую фазу. Химики начали исследовать радиоактивные элементы. В 1939 году француженка М. Пере обнаружила среди продуктов распада радиоактивного элемента актиния новый элемент. Полученный из актиния неведомый продукт «таял» на глазах — каждую 21 минуту от него оставалась половина. Другая часть распадалась с выделением альфа-частиц. И нужно было быть искусным экспериментатором, чтобы успеть определить его характеристики. Свойства незнакомца совпали со свойствами, предсказанными Менделеевым для элемента № 87 — экацезия. Новый радиоактивный элемент был назван францием.

Остальные элементы, предсказанные Менделеевым, впоследствии получены искусственно современными методами ядерных реакций. Этими методами были выделены также многочисленные изотопы — химические аналоги — известных ранее элементов и не встречающиеся в природе элементы с атомным весом, превышающим атомный вес урана. Эта история полна неожиданностей, трудностей, и об этом мы расскажем дальше. Здесь же следует лишь заметить, что Менделеев предчувствовал ход событий и указывал на возможность расширения периодической системы за счет неизвестных еще тяжелых элементов.

Пророческими оказались слова Менделеева: «…периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает».

Физики отнимают у химиков атом

Дальше происходит то, что иллюстрирует название одной из глав в современной «Истории химии» итальянца Микеле Джуа «Физика обновляет химию и отнимает у нее атом».

Уже в 1871 году в первом издании фундаментального труда «Основы химии» Менделеев развивает мысль Ломоносова о том, что атомы, со времен древних атомистов считавшиеся неделимыми, «суть сложные вещества, образованные сложением еще меньших частей, что называемое нами неделимым (атомы) — неделимо только обычными химическими силами… Несмотря на шаткость и произвольность такого предположения, к нему невольно склоняется ум при знакомстве с химией».

Там же он обращает внимание читателя на большое значение физических методов исследования и прямо указывает: «Можно надеяться, что он (экаалюминий) будет открыт спектральным исследованием…» И действительно, экаалюминий — галлий — был открыт при помощи спектрального метода — расшифровкой оптических спектров веществ.

Менделеев придавал большое значение сопоставлению закономерностей спектров с периодическим законом: «Во всех подобных сопоставлениях виден зачаток понимания связи между атомными весами, химическими аналогиями и положением спектральных линий простых тел. Но, по моему мнению, еще не видно точных закономерностей, которые управляют зависимостью указанных предметов, а видно только отражение периодического закона».

Менделеев не дожил до того времени, когда связь химических свойств веществ и их физического строения стала фактом науки. Ведь в его время не было известно даже строение атома. Только через четыре года после его смерти физика совершила первый прорыв к пониманию строения материи. Легендарный австралиец Эрнест Резерфорд в 1911 году опубликовал свои опыты по рассеянию альфа-частиц атомами.

Он при помощи своих учеников обстрелял мишень из тонкой металлической фольги узким пучком альфа-частиц и… поразился!

Альфа-частицы рассеивались от мишени не узким пучком, а во все стороны — даже под большими углами. Размышления над этим странным фактом привели его к первым догадкам об устройстве микровселенной атома: такой характер рассеяния частиц-снарядов может быть лишь следствием того, что основная масса атома содержится в малом объеме — ядре. Тут же в ядре атома сосредоточен и его положительный заряд. Резерфорд писал: «Положительный заряд, связанный с атомом, сконцентрирован в крошечном центре, в ядре. А компенсирующий отрицательный заряд распределен в сфере с радиусом, сравнимом с радиусом атома».

Так возникла планетарная модель атома: малое тяжелое положительное ядро, вокруг которого вращаются электроны. Количество электронов таково, что их суммарный заряд компенсирует положительный заряд ядра.

Теперь мы знаем: заряд ядра соответствует номеру элемента в таблице Менделеева. Следовательно, этому же номеру соответствует количество электронов в атоме. Значит, номер, под которым стоит атом в таблице Менделеева, определяет химические свойства этого атома.

Логическая цепочка, которая сегодня всем очевидна. Но путь к пониманию этой взаимосвязи был нелегким. Поначалу модель атома, предложенная Резерфордом, вызвала противоречивую реакцию. С одной стороны, она открывала путь к объяснению физических и химических закономерностей. С другой — явно противоречила теории Максвелла, надежно обоснованной множеством разнообразных экспериментов.

Прежде чем обсудить, в чем заключается это противоречие, следует представить читателю молодого датского физика, который, ответив на этот вопрос, круто изменил плавное развитие классической физики.

Защитив диссертацию в родном Копенгагене, Нильс Бор поехал в Кембридж к Дж. Дж. Томсону, прославившемуся открытием электрона и созданием модели строения атома. Это была дорезерфордовская модель: внутри сферы, равномерно заполненной положительным зарядом, располагались отрицательные электроны. Их суммарный заряд компенсировал положительный заряд, распределенный внутри сферы. Изучая статьи Томсона, Бор увидел огрехи в его модели. И решил поделиться своими мыслями со знаменитым ученым. Но Томсона не заинтересовали идеи Бора. Тщетно в течение нескольких месяцев Бор ждал возможности обстоятельно поговорить с маститым физиком. Встреча не состоялась. Но пребывание Бора в Кембридже прошло не зря. Там он услышал о Резерфорде и его новой модели атома. Ознакомился и сразу поверил в нее.

Бор поехал в Манчестер, чтобы работать с Резерфордом. Шла весна 1912 года — Резерфорд был в отъезде.

К возвращению Резерфорда Бор четко понял: из модели Резерфорда следует, что не атомный вес управляет таблицей Менделеева, а заряд ядра, обнаруженного Резерфордом в атоме. Истекал срок, отпущенный Бору на поездку в Англию. Но он не мог уехать, не рассказав Резерфорду о своей находке. Чтобы не отнимать у Резерфорда много времени, Бор изложил свои мысли в сочинении, которое, возможно следуя дипломатическому этикету, назвал Памятной запиской.

Резерфорд выслушал Бора без энтузиазма, но все же Дал совет не начинать работу с изучения связи между строением сложных атомов и их химическими свойствами, сосредоточиться на атоме водорода. «это был важный и плодотворный совет.

Обдумывая планетарную модель атома, Бор, естественно, натолкнулся на ее противоречие с теорией Максвелла. Противоречие состояло в том, что электрон, вращающийся по орбите вокруг ядра, должен, в соответствии с теорией Максвелла, излучать электромагнитные волны. При этом энергия его движения превращается в энергию электромагнитных волн. В результате орбита электрона не может оставаться эллиптической. Она превращается в спираль, двигаясь по которой электрон неизбежно упадет на ядро, и атом погибнет.

Все предшественники Бора рассуждали так: теория Максвелла подтверждена многими опытами. Она правильна. Атомы устойчивы. Никто не наблюдал гибели атома. Значит, из противоречия между этой теорией и планетарной моделью следует, что модель Резерфорда ошибочна. Но Бор был в восторге от модели Резерфорда. Только она могла объяснить опыт с рассеянием альфа-частиц. Бор был уверен, что модель соответствует реальности. Где же выход из тупика?

Нужно было обладать гениальной интуицией, спокойной верой в свои силы, чтобы найти выход. И Бор нашел его: модель Резерфорда правильна, теория Максвелла безупречна, но она неприменима к изучению строения атома.

Впоследствии Бор писал: «Я пришел к убеждению, что электронное строение атома Резерфорда управляется квантом действия».

Весной следующего, 1913 года Бор возвратился в Манчестер с готовым ответом: атомы существуют потому, что к ним неприменима теория Максвелла. Это была революция, которую предстояло защищать.

Бор утверждал, что орбиты электронов не произвольны. Электроны вращаются вокруг ядра только по вполне определенным орбитам. Вращаясь по ним, электроны не излучают энергии. Не излучают, вопреки теории Максвелла.

Излучение порции — кванта света происходит только тогда, когда электрон перескакивает с одной из «разрешенных» орбит на другую.

Этого было достаточно для объяснения устройства и устойчивости атома Резерфорда и для объяснения строения оптических спектров атомов.

Таково начало эпохи квантовой физики.

…Когда Бор второй раз приехал в Манчестерский университет к Резерфорду, там уже год работал выпускник Оксфорда Генри Мозли. Он исследовал спектры рентгеновских лучей, испускаемых различными веществами. Получал то, что называют рентгеновскими спектрами. Уже в следующем году он выявил закон, обессмертивший его имя.

Исследуя рентгеновские спектры химических элементов, он обнаружил связь между частотой спектральных линий рентгеновского излучения исследуемого элемента с его порядковым номером в таблице Менделеева. Этот закон имел большое значение для подтверждения периодического закона химических элементов и установления физического смысла атомного номера элемента.

Свою замечательную работу Мозли выполнил всего за один год. Он не смог пойти дальше — грянула мировая война, он был мобилизован в английскую армию и убит в августе 1915 года в возрасте 27 лет. Но он успел сделать достаточно, чтобы остаться в истории науки.

Бор писал об открытии Мозли: «Этот закон сразу же дал не только убедительное доказательство в пользу атомной модели Резерфорда, но вместе с тем обнаружил потрясающую интуицию Менделеева, который в определенных местах своей таблицы отошел от правильной последовательности возрастания атомных весов».

Резерфорд писал об этой работе: «Открытие Мозли составляет эпоху в истории наших знаний об элементах, оно раз и навсегда закрепляет правильный порядок элементов… от водорода до самого тяжелого элемента — урана».

Работа Мозли имела продолжение, об этом речь впереди.

Колдовство

Идеи Бора воодушевили многих ученых на поиски законов, правящих в микромире атома. Среди них были теоретики американец Чарлз Томсон Рис Вильсон (Нобелевская премия 1927 года за камеру Вильсона для наблюдения космических лучей) и немец Арнольд Иоганн Вильгельм Зоммерфельд, ставший членом многих академий наук.

Их чрезвычайно заинтересовали квантовые числа, предложенные Бором. Казалось бы, Бор использовал формальный прием. Он «перенумеровал» орбиты электронов в атоме, приписав им простые целые числа. Так в науку впервые вошли квантовые числа, характеризующие строение атома.

В действительности этот шаг оказался отнюдь не формальным. В этом убедились прежде всего Вильсон и Зоммерфельд. Они принялись почти одновременно — в 1916 году — на основе модели атома Бора рассчитывать спектры атомов веществ, и прежде всего атома водорода. Поначалу они потерпели фиаско — не получили обещанного Бором оптического спектра водорода. Тем более не удалось рассчитать спектры более сложных атомов. Что же это значило? Неувязка, простая математическая оплошность или трагедия квантовых идей?

Правильно ли они «читают» оптические спектры? Правильно ли учитывают боровские квантовые числа?

Зоммерфельд был одним из тех тонких исследователей, о которых принято говорить, что природа наделила их верной интуицией.

Вначале он был бескомпромиссно предан взглядам Бора, принял их, как видно, полностью, без критики.

Но во всем ли Бор безупречен? Не вкрались ли в постановку задачи ошибки?

Бор считал орбиты электронов в атомах круговыми. Тут он был прямым последователем Коперника, который тоже представлял себе орбиты планет кругами. И ошибался, как мы теперь знаем. Это понял Кеплер. Он смог объяснить тонкие эффекты планетных движений, лишь предположив, что планеты движутся не по окружностям, а по эллипсам.

Обдумывая расхождения между расчетами Бора и спектром водорода, полученным из опыта, Зоммерфельд словно заразился сомнениями Кеплера. И он поначалу исходил из уверенности Бора: орбиты электронов в атоме круговые. Но это привело его к противоречию с опытом. Итак, может быть, они, как и орбиты планет, эллиптические? Может быть, электроны движутся по эллипсам, в одном из фокусов которых расположено ядро атома? Зоммерфельд, идя по стопам Бора, пошел дальше. Он придал новый смысл квантовому числу. Пусть оно фиксирует не радиус, а среднее расстояние от ядра, вокруг которого электрон движется по эллиптической орбите. Проверка, размышления. Совпадения со спектральными данными не было! И Зоммерфельд вводит еще одно, новое квантовое число — для обозначения угла, характеризующего направление от ядра к электрону. Снова расхождения. Зоммерфельд был вынужден предположить, что плоскость, в которой лежит оптическая орбита электрона, наклонена к некоторой экваториальной плоскости. Он характеризовал такой наклон еще одним, «экваториальным» пантовым числом.

Введя свои квантовые числа, Зоммерфельд назвал боровские квантовые числа главными, а свои — одно «азимутальным», а другое, как мы знаем, «экваториальным».

Позже Зоммерфельд напишет: «Это пространственное квантование несомненно относится к поразительным результатам теории. По простоте вывода и результатов оно выглядит почти как колдовство».

О том, как, пользуясь «колдовским» методом, ученые продолжали рассчитывать схемы устройства различных атомов, мы расскажем дальше. А сейчас несколько слов о судьбе работ Генри Мозли.

Возвратимся в 1915 год, год смерти молодого физика. Эстафетную палочку, выпавшую из его рук, поднял Вальтер Коссель, физик-экспериментатор, окончивший Гейдельбергский университет в 1911 году. Главный его интерес был сосредоточен на спектроскопии, теории химических связей и периодической системе химических элементов. Сопоставив рентгеновские спектры атомов с последовательно заполняющимися электронными оболочками атомов, он понял природу химической связи. Это было в 1916 году. Работая в Мюнхенском университете, он поразил научный мир солидной работой — показал, что химические свойства атомов определяются числом электронов во внешней электронной оболочке.

Коссель первым опубликовал вариант периодической системы Менделеева, в которой он, следуя Мозли, пронумеровал все клетки вплоть до урана, пометив прочерками места еще неизвестных в 1916 году элементов.

В том же 1916 году американский физико-химик Гилберт Ньютон Льюис (который в 1929 году введет в науке термин «фотон»), а затем в 1919 году Ирвинг Ленгмюр тоже американский физик и химик (получивший в 1932 году Нобелевскую премию по химии), связали последовательное заполнение электронных оболочек атомов с их химическими свойствами и расположением в клетках таблицы Менделеева. Затем Льюис сделал важный шаг, заметив связь устойчивости молекул с количеством электронов во внешних оболочках атомов, образующих молекулу. Для подавляющего числа устойчивых молекул суммарное количество электронов во внешних оболочках атомов, составляющих эти молекулы, является четным. Если это количество нечетно, то молекула обладает большой химической активностью, она стремится связаться с еще одним атомом или с другой молекулой, чтобы образовать соединение с четным суммарным числом электронов во внешних оболочках соединившихся атомов.

Это был период накопления опытных фактов и феноменологического (описательного) подхода к объяснению свойств атомов и их связи с периодическим законом Менделеева. Итог этому периоду подвел Бор в 1921 году в докладе «Строение атома в связи с химическими и физическими свойствами элементов».

Перечисление всех изложенных в докладе результатов заняло бы слишком много места. Все они направлены на выявление связи строения электронных оболочек атомов с их физическими и химическими свойствами. В частности, Бор подметил, что водород начинает, а гелий завершает первый период таблицы Менделеева. Далее идут периоды от лития до неона и от натрия до аргона, содержащие по 8 элементов, а два дальнейших периода — от калия до криптона и от рубидия до ксенона — содержат по 18 элементов.

Исходя из последовательного рассмотрения усложняющихся электронных оболочек и отступления от строго последовательного заполнения их в группах переходных и редкоземельных элементов, Бор объяснил причину химичкой общности элементов внутри этих групп. Он отметил, что по мере приближения к порядковому номеру 86 снова возникает симметричное образование электронной оболочки, свойственное инертным газам (это место впоследствии занял неустойчивый радиоактивный газ — радон)

В своем докладе Бор впервые последовательно показал, как в результате увеличения атомного номера (соответствующего величине положительного заряда ядра) происходит заполнение электронных оболочек атома. Как конкретные свойства оболочек, в свою очередь, приводя к периодическому изменению физических и химических свойств веществ. Квантовая теория объяснила то, что почувствовал и понял Менделеев задолго до заступления квантовой эры.

Это было одно из великих достижений первоначальной квантовой теории строения атомов. Оно стало ее последим триумфом. Чтобы после ответа на вопрос, как устроен атом, поставить и ответить на вопрос, почему он устроен именно так, а не иначе, нужен был новый скачок теории превосходящий по своей дерзости и отваге боровскую теорию квантовых атомных орбит.

Из прошлого в будущее

Идеи Бора произвели сильное впечатление на современников. Но никто из них поначалу не обратил внимания № содержащийся в его постулатах намек на трудности философского осмысления атомных процессов. Вспомним, энергия фотона, излученного электроном, определяется двумя состояниями: орбитой, которую он покидает (то есть прошлым), и орбитой, на которую он приходит (то есть будущим).

Так возникает странная ситуация, при которой физический процесс зависит не только от прошлого, но и от будущего!

Это качественно новая проблема, возникшая перед физиками в мире атома, незнакомая им в мире больших вещей. Физики встретились с ней впервые. Она противоречила всему многовековому опыту, положениям классической физики, которая выявила, казалось, неопровержимую истину: каждое явление определяется предшествующим событием. А теперь в микромире выяснилось, что иногда это явление предопределено, зависит от будущего. Создавалось впечатление, что электрон, покидая свою орбиту, знает, куда, на какую из многочисленных доступных ему орбит, он стремится.

Физики этого не знали. Но это надо было научиться предсказывать, если они хотели овладеть тайной атома.

Образовалась еще одна трещина в классической физике. Ученые не могли считать, что фотон рождается после того, как электрон покидает свою первоначальную орбиту — в тот момент, когда он занимает новую орбиту. Потому что он появляется на ней в точном смысле в тот самый момент, как исчезает с первоначальной. Этот процесс не имеет длительности. Что же предопределяет поведение электрона?

Особенно таинственным и необъяснимым казалось то, что расстояние орбит от центра ядра характеризуется определенными числами. Придумав эти числа, назвав их квантовыми, Бор ввел их в расчеты, однако объяснить физический смысл не мог. Но они не были случайностью — тут сказывался жесткий закон. Какой?

Удивительные ответы на эти вопросы дал молодой француз, который начал свою взрослую жизнь со сдачи экзаменов на звание бакалавра по истории, прошел первую мировую войну связистом и заразился физикой от всего старшего брата, рассказавшего ему о волнениях, которые внесли в жизнь ученых кванты. Младший брат, его звали Луи де Бройль, увлекся. Можно сказать, кванты подарили миру великого ученого. Его вклад в науку огромен. Отметим только одну из его работ, имеющую непосредственное отношение к нашей теме.

Размышляя над загадкой электронных орбит, Луи де Бройль представил себе, что электроны в атоме — словно ноты на нотных строчках. Разумеется, это не буквальная аналогия.

Частота звукового тона определяется тем, на какой из строчек нотной записи находится соответствующая нота. Частота электромагнитного поля, которому соответствует излученный электроном квант энергии, — фотона определяется расстоянием между орбитами: той, с которой электрон исчез, и той, на которой появился. Разность звуковых частот между соседними нотными строчками описывается определенными числами. Подобные числа появляются и при вычислении разности энергии электрона на орбитах в атоме.

Де Бройль представил себе, что электрон, словно некое умозрительное подобие звучащей ноты, связан со своей волной. Что ему уютно только на такой орбите — строчке, где укладывается целое число связанных с ним волн. И если ему суждено перескочить на другую орбиту, он выберет такую, где тоже укладывается целое число волн. У каждого вещества есть свой набор нотных строчек — орбит. Это они определяют, какие именно фотоны способны рождать электроны, перескакивая с орбиты на орбиту в атоме данного элемента.

Так де Бройль связал между собой модель атома, придуманную Бором, с особыми волнами, управляющими поведением электронов в атоме. Расчет, произведенный де Бройлем, привел его к боровским орбитам. Квантовые числа Бора обрели физический смысл.

Внутреннее строение атома все более прояснялось. Оно четко проявлялось и в расположении цветных линии оптического спектра, и в значениях квантовых чисел.

Для того чтобы избежать недоразумений, следует напомнить, что в дальнейшем квантовая физика была вынуждена отказаться от представления движения электронов при помощи определенных орбит. В соответствии с этим изменился и смысл, вкладываемый в квантовые числа, введенные Бором и Зоммерфельдом. Но эти квантовые числа остались необходимыми и в новой квантовой теории, пришедшей на смену квантовой механике Бора — Зоммерфельда.

Метод квантования, который Зоммерфельд назвал колдовством, прочно вошел в обиход физики. Но приемы колдовского ритуала постепенно совершенствовались. Этим колдовством в совершенстве овладел Эдмунд Клифтон Стонер, талантливый физик-теоретик, окончивший Кембриджский университет. Он стал в 1937 году членом Лондонского королевского общества. Круг его научных интересов — проблемы магнетизма, атомной структуры веществ, квантовая статистика. В 1925 году он ввел в науку подразделение электронных оболочек атома на подоболочки. Путь к этому начался так.

Стонер сопоставлял спектральные линии в оптических спектрах атомов со всем набором возможных сочетаний трех квантовых чисел, введенных Бором и Зоммерфельдом перед ним распахнулись двери, ведущие в «кухню» природы, где по вполне определенным рецептам «приготовлялись» те или иные атомы.

Стонер сумел проследить, как из спектров атомов с необходимостью вытекает порядок распределения электронов орбитам, начиная от простейшего атома водорода, имеющего один электрон, к сложным многоэлектронным атомам. В 1924 году в статье «Распределение электронов по атомным уровням» он показал соответствие между рентгеновскими спектрами элементов и квантовыми числами Бора и Зоммерфельда.

Стонер пишет: «Электроны могут входить в группу (группами он называл электронные оболочки) до тех пор, пока не будут заняты все возможные (для этой оболочки) орбиты, и тогда атом будет обладать симметричной структурой.

Работа Стонера послужила в определенном смысле завершением работы Менделеева по выявлению связи физических и химических свойств атомов с их взаимным расположением в периодической системе элементов. Запомним: химические свойства элементов определяются количеством электронов во внешней оболочке атома. Внутренние оболочки иногда влияют на химические свойства, но гораздо слабее, чем электроны внешней оболочки.

Теперь в каждой из клеток периодической системы элементов можно было просто нарисовать схему расположения электронных орбит, которые группируются в оболочки, соответствующие периодам таблицы Менделеева. Вопрос о том, как устроены атомы и как их устройство связано с их свойствами, казался выясненным окончательно.

За кулисами периодического закона

Истинным ученым ни один шаг не кажется последним. Прозрачная ясность схемы Стонера неизбежно породила вопрос: почему заполнение электронных оболочек происходит именно так, а не иначе? Что стоит за периодическим законом, на чем основан этот закон?

Уже в марте 1925 года немецкий физик-теоретик Вольфганг Паули ответил на этот вопрос. Ответил введением постулата, ставшего затем одним из фундаментов квантовой физики. Этот постулат известен теперь как «принцип запрета» Паули.

Незадолго до того, анализируя с квантовой точки зрения влияние внешнего магнитного поля на спектр атомов, Паули пришел к любопытному выводу. Он решил, что все известные результаты такого воздействия (открытые голландцем Питером Зееманом, получившим в 1902 году Нобелевскую премию), включая воздействие сильных магнитных полей, можно объяснить. Для этого надо допустить ситуацию, которую нельзя описать классически. Как видно, электрон обладает неизвестной до того своеобразной двузначностью квантовых свойств.

В статье «О связи заполнения электронных групп в атоме со сложной структурой спектров» Паули опирается на результаты Стонера и на обнаруженную им самим двузначность квантовых свойств электрона. Для того чтобы упростить рассуждения, Паули отмечает, что при использовании трех квантовых чисел приходится признать, что в атоме, неподвергаемом внешним воздействиям, могут существовать группы орбит электронов, для которых энергии электронов одинаковы. Такие «групповые» состояния он называл вырожденными. Воздействие магнитного поля, в соответствии с наблюдениями Зеемана, выявляет отдельные орбиты, образующие группу. Для того чтобы разобраться в этом, достаточно ввести помимо трех квантовых чисел Зоммерфельда еще одно квантовое число. Если классификация группы производится при помощи четырех квантовых чисел, можно без труда объяснить, как вырожденные группы расщепляются на отдельные орбиты, различающиеся между собой величиной энергии. Причем каждая из таких орбит может быть занята только одним-единственным электроном.

Принцип запрета можно сформулировать так: если в атоме находится электрон, для которого все четыре квантовых числа имеют определенные значения, то это состояние «занято». «Занято» означает, что ни один из других электронов, входящих в состав этого атома, не может иметь такой же набор квантовых чисел.

Паули рассматривает следствия из этого принципа. Принцип запрета не только непосредственно объясняет Зееманом расщепление спектров атомов под действием магнитного поля, но и приводит к результатам Стонера. Более того, так как физические и химические свойства атома определяются его электронными оболочками, то принцип запрета позволил бы построить периодическую систему Менделеева, не опираясь на физико-химические свойства элементов. Не опираясь на то, что послужило Менделееву основой для построения его таблицы.

Система Менделеева, если бы она не была построена самим Менделеевым, возникла бы как необходимое следствие квантовых законов, включая «принцип запрета» Паули. Думая об этом, нельзя не удивляться интуиции Менделеева, позволившей ему сформулировать периодический закон задолго до возникновения квантовой механики.

Постулативный характер «принципа запрета» Паули побуждал ученых к отысканию той физической реальности, которую выявляет этот постулат. В справедливость его поверили все. Без него невозможно объяснить ни тонки детали атомных спектров, ни физическое содержание периодического закона.

Но что же стоит за этим принципом? В то время (в 1925 году) физики считали окончательно понятым только то, что можно свести к прототипам, изученный в рамках механики Ньютона или электродинамики Максвелла или, наконец, в рамках примирившей их Общей теории относительности. Как же понять физический смысл «принципа запрета» Паули?

Здесь нужно познакомиться с теоретиком, который отличался разносторонними интересами. Ему принадлежит, кроме физических, ряд исследований по египтологии Он принимал участие в американской секретной миссии «Алсос», занимавшейся в конце второй мировой войны сбором информации о состоянии атомных исследований в Германии, вывозом документации и оборудования из германских институтов, связанных с атомной проблеме и интернированием немецких физиков-атомщиков. Речь об американце Сэмюэле Абрахаме Гаудсмите.

В 1925 году Гаудсмит вместе с Дж. Уленбеком выдвинул гипотезу о вращающемся электроне. Эта гипотеза не осталась незамеченной, она вызвала волнение среди физиков. Авторы ее утверждали, что электрон похож на вращающийся, заряженный отрицательным электричеством шарик. Вращается он вокруг одного из своих диаметров. И электрон, как и подобает вращающемуся материальному телу, несущему на себе электрический заряд, обладает собственным механическим и магнитным моментом.

Для обозначения собственного вращения электрона и его механического момента ученые воспользовались четвертым квантовым числом, использовав для его обозначения английское слово «спин», которое в переводе означает «волчок». По существу, это было квантовое число, ранее введенное Паули.

Теоретическая часть рассуждений Уленбека и Гаудсмита сводится к следующему: первые три квантовых числа, соответствующие движению электрона по его орбите, отображают три степени свободы, характеризующие положение любого тела в пространстве. Четвертое квантовое число соответствует четвертой — внутренней степени свободы, которой обладает электрон.

B обычной, не квантовой механике тоже известен случаи, когда состояние тела не может быть полностью описано тремя числами, описывающими его положение в пространстве. Примером такого тела является вращающийся гироскоп (вариант волчка, применяемый в системах навигации.) Для того чтобы полностью описать состояние гироскопа, нужно иметь сведения не только о его положении, но и о направлении и скорости его вращения, а для этого нужно еще одно число.

Уленбек и Гаудсмит объяснили, что их четвертое квантовое; число не связано с движением электрона по орбите, оно характеризует его внутреннее свойство, аналогичное вращательному состоянию гироскопа. Именно поэтому они предложили называть это четвертое квантовое число словом «спин».

Они были не первыми, кто предложил идею вращающегося электрона. Это любопытная история. Впервые вращающийся электрон примыслился американцу Крекингу — стипендиату Колумбийского университета. В январе 1925 года он приехал в Тюбинген, в Германию, тогдашнюю спектроскопическую Мекку. Тут он познакомился с письмом Паули к одному из коллег. Паули сообщал, что, приписав электрону еще одно, четвертое квантовое число, описывающее его поведение в атоме, можно избавиться от всех расхождений между квантовой механикой и спектрами.

Кронинг предположил, что это квантовое число соответствует собственному вращению электрона. Однако его гипотеза была принята с недоверием и Зоммерфельдом и самим Паули. И Кронинг решил не публиковать свои догадки. Он отказался от сомнительной идеи.

И когда Гаудсмит и Уленбек пришли к той же мысли и сообщили о ней, Кронинг реагировал на это довольно своеобразно. «Представляется, что новая гипотеза просто переводит семейное привидение из полуподвала в подвал, вместо того чтобы изгнать его из дома», — проиронизировал он.

Теория спина была признана физиками после работы англичанина Л. X. Томаса и ленинградского физика Я. И. Френкеля.

Паули, возражавший против идеи вращающегося электрона, теперь сказал: «Хотя я сначала сильно сомневался… вычисления… сделали меня ее сторонником».

Вслед за ним гипотезу спина признали и остальные.

Вот так бывает в науке: в январе 1926 года, разговаривая с Бором, Паули назвал гипотезу спина ересью в марте стал ее приверженцем. Интересно, что в развития науки физики были вынуждены отказаться от наглядной модели электрона как заряженного вращающегося шарика. Эта модель, облегчившая первоначальное знакомство с квантовыми свойствами электрона, приводила к непреодолимым трудностям. Преодолеть их можно было только отказом от наглядной модели и сохранением спина как внутренней характеристики каждой из микрочастиц.

Принцип Паули и открытие спина в основном завершили выяснение физической основы периодического закона Менделеева.

Но дальнейшее развитие периодической системы — таблицы Менделеева — на этом не прекратилось.

Таблица Менделеева уточнялась в трех направлениях. Во-первых, ученые одно за другим заполняли оставшиеся в ней пустые места, во-вторых, выделяли или синтезировали изотопы, в-третьих, расширяли таблицу за пределы урана.

Пора поразмыслить об изотопах.

Осознание периодического закона и изучение радиоактивности заставило ученых вспомнить об интересной гипотезе, намного опередившей свое время и затем надолго забытой. В 1815 году лондонский врач и химик Уильям Праут выдвинул гипотезу о том, что атомы различных элементов построены из атомов водорода. Он основывался на том, что атомные веса многих элементов являются кратными атомному весу водорода. Если принять атомный вес водорода за единицу, то атомный вес лития близок к 7 бериллия — к 9, углерода — к 12, азота — к 14, кислорода — к 16, фтора — к 19. Отклонение от кратности для Бора и для атомов, более тяжелых, чем фтор, Праут относил за счет недостаточной точности измерения. В первой половине девятнадцатого века многие ученые прибивались гипотезы Праута, однако последующие нения значений атомных весов принудили их отказаться от нее. Ведь, например, атомный вес хлора равен 35,453.

Работы Резерфорда привели к планетарной модели атома. Выяснилось, что атомный вес элемента связан с порядковым номером той клетки, которую соответствующий элемент занимает в таблице Менделеева. Все это заставило ученых вспомнить о гипотезе Праута. С другой стороны, исследования радиоактивных элементов, проводившиеся Резерфордом, его сотрудником Ф. Содди и другими физиками, иногда приводили к случаям, когда радиоактивные элементы, получавшиеся в результате радиоактивного распада, обладают необычными свойствами. Заведомо различные элементы, полученные из различных источников и обладающие различной скоростью и даже различным типом дальнейших радиоактивных превращений, оказалось невозможным отделить один от другого никакими химическими методами. Возникла поразительная ситуация: с точки зрения химии эти элементы тождественны, а с точки зрения физики они различны.

Исходя из периодического закона Менделеева, элементы, обладающие тождественными химическими свойствами, следует помещать в одну и ту же клетку периодической системы элементов, несмотря на то что некоторые из их физических свойств оказываются различными. Содди назвал такие элементы изотопами.

Стабильные (нерадиоактивные) изотопы неона: неон-20 и неон-22 (здесь и дальше цифры, стоящие за названием химического элемента, указывают его атомный вес), обнаружила 1913 году Джозеф Томсон (его не следует путать с Вильямом Томсоном, лордом Кельвином, который напугал современников угрозой тепловой смерти Вселенной). Джозеф Томсон прежде всего известен как автор электрона — это он открыл электрон. Он разработал теорию движения заряженных частиц в электрическом и магнитном полях, он же создал первую модель строении атома, впоследствии уступившую место планетарной модели Резерфорда. В 1906 году он стал нобелевским лауреатом. Именно его теория движения заряженных частиц в электромагнитных полях и легла в основу масс-спектрографа, важнейшего прибора для измерения атомного веса электронов, сконструированного Френсисом Астоном, который с 1913 года был ассистентом Томсона. Война прервала его работу. В 1919 году он возвратился и заинтересовался возможностью разделения изотопов. К тому времени никто не сомневался в существовании изотопов, но никому не удавалось выделить их в чистом виде.

Астон теоретически проанализировал возможности основных методов разделения изотопов, через много лет сыгравших свою роль в создании атомной бомбы. Сравнив метод диффузии, возгонки и центрифугирования с методом, примененным Томсоном еще в 1912 году для разделения изотопов неон-20 и неон-22, он убедился, что томсоновский метод наиболее подходящ для лабораторных следований. (Для промышленного разделения изотопов тяжелых элементов более производительными являются термодиффузия и центрифугирование.)

Метод Томсона состоит в отклонении ионизированных атомов, летящих в вакууме при помощи электрического и магнитного полей.

При проведении первых исследований в 1920 году Астон был поражен тем, что атомные веса всех легких элементов представлялись целыми цифрами. Правило целого числа начинало заметно нарушаться с номера 30.

Было лишь одно маленькое исключение: если принять атомную массу кислорода равной точно 16, то для водорода получалась не единица, а 1,008!

Нужно было обладать незаурядной интуицией, чтобы ставить это различие с предсказанием теории относительности о связи между массой и энергией.

Астон, возродив гипотезу Праута, предположил, что при образовании атомных ядер часть массы протонов переходит в энергию их связи внутри ядра. Он назвал это эффектом упаковки. Теперь это называется дефектом массы.

Получая одновременно с Бором Нобелевскую премию в 1922 году, Астон сказал: «Мы можем быть уверены, совершенно уверены в том, что при превращении водорода в гелий определенная часть массы должна исчезнуть, Космологическое значение этого вывода огромно, и открываемые им возможности для будущего очень важны, важнее, чем любое другое научное открытие, сделанное до сих пор человечеством».

Астон, рассуждая дальше, оценил величину выделяющейся при этом энергии.

Предвосхищая будущее почти на четверть века, он подсчитал, что водород, содержащийся в 9 граммах воды, превращаясь в гелий, высвободит энергию, эквивалентную 200000 киловатт-часов.

«Перед нами источник энергии, достаточный для объяснения происхождения тепла, излучаемого Солнцем», — писал Астон. И далее: «Возможно, будущие исследователи откроют какой-нибудь способ освобождения этой энергии, который позволит ее использовать. Тогда человечество получит в свое распоряжение такие возможности, которые превосходят любую фантазию».

Физики только сейчас приобрели уверенность в том что «такие возможности» удастся реализовать с пользой для человечества. Для этого необходимо разработать метод и создать аппаратуру, обеспечивающую возможность управления термоядерной реакцией, превращающей водород в гелий. К счастью, не оправдались опасения Астона, сказавшего тогда же: «Но нужно, однако, все время помнить о том, что освобожденная энергия может оказаться совершенно неконтролируемой и благодаря своей огромной силе произвести взрыв всего окружающего вещества».

Последующие расчеты показали, а опыт подтвердил, что взрывы водородных бомб не превратили Землю в новую звезду. Но теперь их запас стал столь большим, что ядерная война неизбежно повлечет за собой гибель человечества вследствие радиоактивности, порождаемой ядерными взрывами.

Нельзя не преклониться перед интуицией, перед истинным провидением человека, предвосхитившего на столь большой срок проблему овладения энергией термоядерного синтеза. Известно, что великий Резерфорд, открывший атомное ядро, вплоть до конца тридцатых годов отвергал возможность практического применения ядерной энергии.

Сейчас известно более 275 стабильных изотопов, принадлежащих 83 природным элементам и более 2000 радиоактивных изотопов. Среди них изотопы хлор-35 и хлор-37.

После работ Астона физики в течение многих лет считали, что атомные ядра состоят из протонов и электронов. Предполагалось, что количество протонов в ядре атома данного элемента равно его атомному весу, а количество электронов в нем таково, что их отрицательный заряд компенсирует часть суммарного заряда протонов. Точнее говоря, предполагали, что в ядре ровно такое количество электронов, которое требуется для того, чтобы нескомпенсированный положительный заряд ядра оказался равным атомному номеру — номеру той клетки таблицы Менделеева, в которой расположен соответствующий элемент.

Протонно-электронную модель ядра пришлось отвергнуть из-за того, что она ошибочно предсказывала особые свойства ядер, вытекающие из их статистических характеристик.

После того как в 1932 году английский физик Дж. Чедвиг открыл новую элементарную частицу (он дал ей название «нейтрон»), не имеющую электрического заряда и обладающую массой, лишь незначительно превышающей массу протона, удалось построить новую модель ядра, удовлетворяющую требованиям статистики. Это сделали советские физики Д. Д. Иваненко и И. Е. Тамм. Они показали, что ядра атомов состоят из протонов и нейтронов. Количество протонов равно атомному номеру (номеру клетки той таблицы Менделеева, в которой расположен соответствующий элемент), а количество нейтронов таково, что сумма числа протонов и числа нейтронов, содержащихся в ядре, равна атомному весу соответствующего элемента. Таким образом, положительный заряд ядра равен количеству содержащихся в нем протонов и этот заряд (равный атомному номеру) определяет химические свойства атомов. Так был сделан еще один шаг к пониманию сущности периодического закона Менделеева.

Постоянство относительного содержания изотопов в элементах, получаемых из различных земных источников, и обнаруженные астрофизиками на небесных объектах отклонения от земной нормы играют большую роль в исследованиях Вселенной. Изотопный анализ, основанный на небольших отклонениях изотопного состава некоторых элементов от обычной нормы, позволяет ученым датировать возраст археологических находок и образцов минералов. Такие отклонения наблюдаются в образцах, в составе которых содержатся наряду со стабильными изотопами и нестабильные изотопы, подверженные радиоактивным превращениям.

Химера ли мечта алхимиков?

Во времена Менделеева люди не знали трансурановых элементов, которые должны располагаться в таблице, носящей его имя, за ураном. Но он предвидел возможность их существования.

Длительный поиск трансурановых элементов в природных рудах, специально обработанных для выделения из них урана, тория, радия и других радиоактивных элементов, не дал положительных результатов. Среди ученых возникло мнение: время жизни трансурановых элементов мало. И если они существовали когда-то, то к нашему времени в результате процессов радиоактивного распада превратились в уран, торий и в более легкие элементы. Лишь много позже, после того как трансурановые элементы были синтезированы в лабораториях и их свойства хорошо изучены, следы некоторых из них удалось обнаружить в природных минералах.

В 1934 году итальянец Энрико Ферми, много работавший с облучением различных элементов нейтронами, предложил синтезировать самый близкий из трансурановых, 93-й элемент. Он собирался осуществить это, облучая ядра атомов урана нейтронами. Такой метод был хорошо освоен при исследовании свойств атомных ядер. Удобство его обусловлено электрической нейтральностью нейтрона. У нейтрона нет заряда, и он без помех может приближаться к ядру, несмотря на его положительный заряд. Даже если нейтрон не попадает точно в ядро, но пролетает достаточно близко к нему, то мощные ядерные силы, удерживающие внутри ядра образующие его протоны и нейтроны, затягивают нейтрон внутрь ядра. Они изгибают его траекторию даже в том случае, если прицел был неточен, а первоначальная траектория нейтрона была направлена мимо ядра.

Идея Ферми основывалась на том, что уран-238 — долгоживущий изотоп урана. Каждый из его атомов в среднем через 4,5 миллиарда лет испускает альфа-частицу (ядро атома гелия) и перестает быть ураном-238. Ферми знал, что уран-238.не подвержен бета-распаду, сопровождающемуся выделением электрона, а деление ядра и редкий вид радиоактивного распада «К-захват» были в то время еще неизвестны. Метод, предложенный Ферми для синтеза элемента, имеющего заряд ядра больший, чем у ядра урана, основан на том, что при бомбардировке ядер урана нейтронами ядро урана-238, поглотив нейтрон, не изменяет своего заряда. Значит, оно превращается в ядро урана-239 и теряет свою устойчивость по отношению к бета-распаду. Выбрасывая электрон в результате бета-распада, ядро возвращается в область бета-стабильности, но при этом заряд его ядра, а значит, и его порядковый номер увеличиваете на единицу. В соответствии с периодическим законом Менделеева элемент, заряд ядра которого увеличился на единицу по сравнению с ядром урана, должен быть расположен в периодической таблице рядом с ураном, правее его. Так, писал Ферми, мог быть синтезирован первый трансурановый элемент.

Однако, следуя предложенному плану, ни Ферми, ни его последователи не достигли цели. Лишь весной 1940 года американцы Э. Мак-Миллан (Нобелевская премия по химии в 1951 году), облучая уран-238 нейтронами, наблюдал образование первого трансуранового элемента. Вновь созданный элемент занял 93-ю клетку таблицы Менделеева. Ему присвоили наименование «нептуний» Это был нептуний-239.

Так началось сенсационное продвижение в трансурановую область таблицы Менделеева.

Здесь уместно сказать, что в 1871 году Менделеев поместил уран в VI столбец, который он начал кислородом. Непосредственно над ураном Менделеев расположил вольфрам. Радикальное изменение таблицы произвел в 1902 году профессор химии в Праге Богуслав Браунер. Он провел тщательное определение атомных весов теллура и церия, ввел нулевую группу, ввел в таблицу все открытые к тому времени элементы и расположил редкоземельные элементы в одной общей для них клетке IV столбца, рядом с клеткой, занятой лантаном. При этом он расположил уран в V столбце, под висмутом. Но это был не окончательный вариант. Последующие успехи химиков привели к дальнейшей корректировке периодической системы.

В таблице 1961 года значительно увеличившаяся группа редкоземельных элементов была перемещена в III столбец таблицы, в ее 57-ю клетку, где теперь, помимо лантана, располагаются все 14 редкоземельных элементов. Последний из них — лютеций — имеет атомный номер 71. Одновременно уран возвратился на место, указанное ему Менделеевым, и получил присущий ему номер 92. Здесь вместе с ним были помещены синтезированные к тому времени нептуний (номер 93), плутоний (номер 94) и америций (номер 95). О двух последних мы еще вспомним. Та четверка была объединена в семейство под названием «ураниды». В 89-ю клетку таблицы, под 57-й клеткой, где расположилась группа лантанидов, вместе с актинием бы-1 помещены трансурановые элементы, более тяжелые, чем америций. Это новое семейство получило название «кюриды» в честь Поля и Марии Кюри.

Модернизация не завершила эволюцию таблицы Менделеева. Более того, последовательное применение открытого им периодического закона заставило физиков соединить воедино семейства уранидов и кюридов и поместить их всех в 89-ю клетку таблицы вместе с актинием. В соответствии с названием первого члена семейства его теперь называют семейством актинидов. Оно располагается в группе таблицы, а уран, сохранив за собой номер 92, стал рядовым членом семейства актинидов, отличаясь от остальных огромным временем полураспада. Мы знаем, что половина его атомов, содержащихся в каком-либо образце, распадается только за 4,5 миллиарда лет.

Продвинуться дальше в трансурановую область тем же методом, то есть облучением тяжелых ядер нейтронами, не удалось. Слишком малы были потоки нейтронов, доступные исследователям в 1940 году. Это заставило физиков избрать другой путь, кажущийся с первого взгляда более трудным. Они решили возвратиться к первоначальному методу Резерфорда, облучавшего ядра-мишени альфа-частицами. Резерфорд успешно облучал альфа-частицами легкие ядра, имеющие сравнительно небольшой положительный заряд, не способный воспрепятствовать положительной альфа-частице приблизиться к ядру и проникнуть в него. Физики знали, что тяжелые ядра, обладающие большим положительным зарядом, не позволят приблизиться к себе альфа-частицам, вылетающим из ядер радиоактивных элементов, которыми пользовался Резерфорд и все его последователи. Но к 1930 году Эрнест Лоуренс, замечательный физик-инженер, с первым своим помощником Эдлефсеном изобрел и построил в Калифорнийском университете циклический ускоритель заряженных частиц — циклотрон. Эта машина способна разгонять заряженные частицы — протоны, дейтоны и альфа-частицы — до энергий 20–40 Мэв*.

При столь высоких энергиях такая частица способна преодолеть отталкивающие силы заряженного ядра урана и приблизиться к нему столь близко, что мощные ядерные силы втянут ее внутрь ядра.

Если энергия ускоренной частицы превышает кулоновский барьер ядра*, то этот избыток энергии входит вместе с частицей внутрь ядра и нагревает его, как нагревает мишень застрявшая в ней пуля: кинетическая энергия движения превращается в тепло. В данном случае в тепловые движения протонов и нейтронов внутри ядра-мишени.

Нагретое ядро остывает, выбрасывая один или несколько нейтронов. В результате образуется новое ядро. Если для бомбардировки применялись ускоренные дейтоны (заряд + 1), то остывшее ядро, потеряв нейтрон, сохраняет заряд на единицу больший, чем заряд ядер мишени. Так, в декабре 1940 года при бомбардировке урана дейтонами был повторно синтезирован нептуний-239 и другой изотоп, нептуний-238.

Этот изотоп подвержен бета-распаду. В результате ядро нептуния-238, практически не изменяя своей массы (масса улетевшего электрона почти в 2000 раз меньше массы протона и нейтрона), но увеличивая свой заряд на +1, превращается в новый элемент, идентифицированный 23 февраля 1941 года и названный плутонием (это плутоний-238). Он должен быть расположен в таблице Менделеева правее нептуния. Так был получен второй транс-урановый элемент, плутоний-238.

Вскоре группа в составе Эмилио Сегре, Джозефа Кеннеди, Артура Вэйля и Глена Сиборга, исследовавшая радиоактивный распад нептуния-239, обнаружила изотоп плутоний-239, его важнейший изотоп, способный к делению, аналогичному делению изотопа уран-235. Уже к 1942 году удалось изготовить 0,5 мг плутония — количество, достаточное для изучения его химических свойств. В 1944 году этот метод снова привел к успеху. Сиборг — незаурядный ученый, ставший нобелевским лауреатом, бывший некоторое время председателем атомной комиссии при конгрессе США, — и его сотрудники осуществили бомбардировку альфа-частицами ядер плутония-239. При поглощении альфа-частицы масса ядра возрастает на четыре единицы, а заряд на две. Возникшее при этом ядро остывает, испуская нейтрон. При этом масса ядра уменьшается на единицу, а его заряд остается неизменным. Так был синтезирован четвертый трансурановый элемент, который получил название «кюрий» (номер 96). Так был получен изотоп кюрий-242.

Все трансурановые элементы радиоактивны, но имеют самые разнообразные времена жизни: нептуний — около 2 суток, плутоний — 24 000 лет, америций — 500 лет, кюрий — 5 месяцев.

После пуска ядерных реакторов открылся новый путь синтеза трансурановых элементов.

Деление ядра — новый вид радиоактивных превращений, ставшее надеждой и угрозой жизни людей XX века, — было открыто в 1939 году немецкими физиками Отто Ханом и Фрицем Штрассманом при бомбардировке ядер урана нейтронами. Они обнаружили, что при такой бомбардировке возникают ядра щелочно-земельных элементов (II группа таблицы Менделеева). Вскоре Лиза Мейтнер (талантливая женщина-физик, работавшая в Институте кайзера Вильгельма в Берлине, которая одна из первых поняла возможность военного применения реакции деления, бежала накануне второй мировой войны в Голландию, а затем в Копенгаген к Бору) и ее племянник О. Фриш объяснили: при этом делятся ядра изотопа уран-235. Поглотив лишний нейтрон, они становятся неустойчивыми и распадаются примерно на две равные части. В 1940 году советские физики Г. Н. Флеров и К. А. Петржак сделали важнейшее открытие — обнаружили спонтанное (самопроизвольное) деление ядра. Начался новый этап продвижения в трансурановую кладовую природы.

Капли и реакторы

Факт деления ядер урана заставил физиков глубже изучить внутреннее строение атомных ядер. Простого представления о том, что в ядре тесно связаны протоны и нейтроны, удерживаемые мощными ядерными силами, было недостаточно для того, чтобы рассчитать детали процесса деления.

Теорию деления ядер создали Бор и Дж. А. Уилер и независимо от них Я. И. Френкель. Они рассматривали ядро упрощенно, уподобив его капле несжимаемой жидкости. Электрический заряд протонов ядра стремится разрушить его. Ядерные силы удерживают частицы, входящие в ядро, аналогично тому, как молекулярные силы удерживают молекулы жидкости, образующие каплю. Это отнюдь не формальная аналогия. Молекулы жидкости, расположенные на поверхности капли, постоянно испытывают совокупную силу притяжения остальных молекул, направленную к центру капли. Но жидкость несжимаема, молекулы, находящиеся глубже, не дают внешним молекулам сдвинуться внутрь. Стремление внешних молекул следовать силе, тянущей их внутрь, уравновешивается внутренним давлением. Ситуация похожа на ту, что возникает в надутом резиновом шарике. Давление воздуха не дает резиновой оболочке сжаться. Оболочка остается напряженной действующими в ней молекулярными силами.

Это, конечно, лишь аналогия. В ядре, как и в капле жидкости, нет оболочки, состоящей из инородного вещества. Но в его поверхностном слое преобладают мощные ядерные силы, удерживающие все протоны и нейтроны внутри ядра. Это равновесное состояние может нарушиться при попадании в ядро лишнего нейтрона или протона. Капля «ядерной жидкости» начнет колебаться. Она может отдать избыток энергии, например выбросив из себя нейтрон. Невозможен и другой процесс. Колебания поверхности ядра могут оказаться столь интенсивными, что ядро примет форму гантели — двух шаров, соединенных перемычкой. Если колебания очень велики, перемычка может разорваться. Произойдет деление ядра на две части, которые под влиянием ядерных сил стремятся стянуться в две отдельные капли — в два ядра.

Обратим внимание на важное обстоятельство. Масса этих ядер не обязательно одинакова. Не одинаково может быть и распределение между ними полного количества протонов и нейтронов, входящих в исходное ядро. В соответствии с количеством протонов в каждой из частей между ними перераспределяются электроны, окружавшие исходное ядро. Возникают два, тоже не обязательно одинаковых, атома.

Ядра этих атомов обычно сохраняют избыточную энергию. Они освобождаются от нее — «остывают», например испуская по одному нейтрону. Иногда может выделиться и больше одного нейтрона.

Когда ученые осознали механизм деления ядра, некоторые из них увидели путь овладения ядерной энергией.

Возможность спонтанного деления, без участия внешних нейтронов, открывала и путь к созданию атомной бомбы. Ее следовало бы назвать ядерной бомбой, ведь при ядерной реакции выделяется энергия, заключенная в ядре> ядерная энергия. Это не энергия электронных оболочек, отдаваемая при химических реакциях, например при горении или обычном взрыве. Однако название «атомная бомба» стало привычным и общеупотребительным.

Первые оценки количества урана, способного самопроизвольно положить начало реакции деления его ядер, сделали Я. Б. Зельдович и Ю. Б. Харитон, два выдающихся советских физика. Они подсчитали: вероятность спонтанного деления ядер урана-235 очень мала. Но при каждом акте деления высвобождается (в среднем) более двух нейтронов. Попав в ядро соседнего атома урана-235, каждый из них практически мгновенно вызовет деление этого ядра и высвободит еще два или больше нейтронов. Так развивается цепная ядерная реакция, ядерный взрыв. Зельдович и Харитон правильно оценили, какой должна быть масса урана-235 для «запуска» цепной реакции, для взрыва бомбы.

В ядерных реакторах, применяемых для получения ядерной энергии в мирных целях, принимаются меры к тому, чтобы не дать цепной реакции деления ядер перейти во взрыв. Для этого специальная система управления поглощает часть нейтронов. Достигнув определенной величины, скорость ядерных реакций более не возрастает.

Внутри реактора бушует первозданная стихия: рождается огромное количество нейтронов и тут же поглощается соседними ядрами и системой управления. Когда ученые достаточно глубоко осмыслили характер этих процессов, они поняли: это подходящий котел для «варки» трансурановых элементов! При этих условиях может успешно реализовываться предложенный Ферми метод получения тяжелых элементов. Первый шаг здесь — выделение и накопление изотопа плутоний-239. Второй — использование этого изотопа для накопления более тяжелых трансурановых элементов.

Эксперимент был осуществлен. Он происходит следующим образом. Внутрь ядерного реактора, туда, где через каждый квадратный сантиметр любой поверхности пролетает миллион миллиардов нейтронов, помещают образец плутония-239. Каждое ядро плутония-239, поглотив один нейтрон, превращается в ядро плутония-240. Оно может избавиться от полученной при этом избыточной энергии двумя путями. 70 % ядер испытывают процесс деления, порождающий два ядра. Эти ядра образуют в свою очередь два атома, принадлежащие к средней области таблицы Менделеева. 30 % ядер плутония-240, не успевая претерпеть деление, поглощают еще один нейтрон, превращаясь в ядро плутония-241. Дальше процесс опять может развиваться двумя путями: 20 % от первоначального количества ядер плутония-241 испытывают деление, а 10 % поглощают еще один нейтрон, превращаясь в плутоний-242. Вероятность деления этих ядер очень мала. Все они поглощают еще один нейтрон, превращаясь в плутоний-243. Это ядро испускает электрон. Ученые говорят, ядро неустойчиво относительно бета-распада. И, увеличив при этом свой заряд на единицу, переходит направо, в соседнюю клетку периодической системы. В данном случае оно располагается на пустом месте между плутонием и кюрием. Новое ядро, окружив себя электронами, становится атомом, получившим название «америций». Это изотоп америций-243.

Мы должны остановиться, для того чтобы ответить на вопрос внимательного читателя: каким образом ядро, состоящее из протонов и нейтронов, может испустить электрон?

Это законный вопрос. Он не может остаться без ответа. Действительно, мы уже знаем, что внутри атомных ядер не существует свободных электронов.

Ответ таков: нейтрон не является стабильной частицей. В свободном состоянии он, под влиянием внутренних процессов, распадается, порождая протон, электрон и антинейтрино. Слово «порождает» имеет здесь точный смысл. Нейтрон не содержит в себе этих трех частиц. Они возникают при его распаде примерно через 15 минут после того, как нейтрон становится свободным от внешних воздействий.

Внутри большинства ядер нейтрон приобретает стабильность. В них он может существовать вечно. Но в некоторых ядрах нейтрон получает возможность распасться. При этом внутри ядра остается новорожденный протон, а наружу вылетают электрон и антинейтрино. Это и есть процесс бета-распада ядра. В результате масса ядра почти не изменяется (масса улетевших частиц очень мала), а заряд ядра увеличивается на единицу. Значит, оно, пополнив свою электронную оболочку одним электроном, переносится в таблице Менделеева на одну клетку вправо.

Возвратимся теперь к ядру америция-243.

Рассматриваемый нами процесс не заканчивается на образовании америция-243. Поглотив один нейтрон, америций-243 превращается в кюрий-244, изотоп ранее синтезированного кюрия-242. Для кюрия-244 главным способом распада оказывается деление. 8,5 % от первоначальных ядер испытывают деление, а 1,5 % успевают поглотить два нейтрона, превращаясь в изотоп кюрий-246. И снова две возможности: 0,8 % от первоначальных ядер, ставшие изотопом кюрий-246, испытывают деление, а 0,7 % из них поглощают по два нейтрона, превращаясь в кюрий-248. Теперь ядро кюрия-248 поглощает лишь один нейтрон, образуется кюрий-249. Но прежде чем оно успевает поглотить второй нейтрон, происходит бета-распад — испускание электрона. Тем самым ядро приобретает добавочный положительный заряд и превращается в ядро следующего, пятого трансуранового элемента, названного берклием. Так рождается изотоп берклий-249.

Увлекательная «игра» в сотворение новых, невиданных элементов привлекла многих физиков. Но для того чтобы продвинуться таким путем дальше, потребовалось увеличить плотность потока нейтронов, воздействующего на образец, еще в десять миллионов раз! Мера, необходимая потому, что ядра тяжелых трансурановых элементов, следующих за берклием, при меньших плотностях потоков нейтронов разрушаются раньше, чем успевают поглотить еще один нейтрон.

При увеличении плотности потока нейтронов ядра берклия-249 успевают поглотить по одному нейтрону и, «перепев» бета-распадом, потеряв электрон, превращаются в ядра нового трансуранового элемента, получившего наименование «калифорний». При этом получается калифорний-250. Его ядра испытывают процесс спонтанного деления. Те ядра калифорния-250, которые, не успев претерпеть деление, поглощают два нейтрона, превращаются в изотоп калифорний-252. Их оказывается всего 0,3 % от исходного количества плутония-239, если он облучался потоком нейтронов плотностью в 10 нейтронов через квадратный сантиметр в секунду.

Этим методом удалось получить 99-й трансурановый элемент эйнштейний и 100-й трансурановый элемент фермий-258. Дальше продвинуться не удалось — изотоп фермия делился спонтанно чрезвычайно быстро.

Еще большие плотности потоков нейтронов возникают при термоядерных взрывах. В 1953 году в США при термоядерном взрыве был пройден своеобразный рубеж — создан элемент фермий, который образовался из ядер урана-238. Некоторые из таких ядер поглотили одновременно по 17 нейтронов! При этом образовались неустойчивые ядра урана-255, которые испытали цепочку из последовательных семнадцати бета-распадов, что и привело к образованию изотопа фермий-255.

Ученые продолжили исследования с применением термоядерных взрывов. Они смогли увеличить плотность потока нейтронов еще в сто раз. Однако новых трансурановых элементов получить не удалось. Наградой за усилия был лишь еще один изотоп сотого элемента — фермий-257, образовавшийся из ядер урана-238 при одновременном поглощении ими по 19 нейтронов.

Причиной, ограничившей возможности дальнейшего продвижения методом термоядерных взрывов, является малое время жизни тяжелых изотопов в области урана — фермия. Эти изотопы разрушаются вследствие спонтанного деления, прежде чем успевают подвергнуться бета-распаду. Возможности этого метода ограничиваются и другой причиной. Вероятность поглощения ядром урана одновременно многих нейтронов резко уменьшается и становится ничтожной для числа, превышающего 19.

Путь вверх — от 100-го элемента к 101-му — потребовал усовершенствования метода облучения тяжелых ядер ускоренными заряженными частицами. Оказалась необходимой и разработка более совершенных методов опознания — идентификации новых элементов.

И все-таки в 1955 году был получен 101-й элемент. Его назвали менделевием. Многозначительная деталь: он был получен в США, но назван в честь русского химика Менделеева.

О том, сколь быстро возрастают трудности получения и опознания элементов за порогом 100-го элемента, можно судить по следующим примерам. При синтезе калифорния в 1950 году в распоряжении исследователей было 0,5 миллиардной части от миллиардной доли грамма эйнштейния-253. Столь маленькое количество ядер-мишеней привело к тому, что при облучении альфа-частицами в течение часа образовывался лишь один атом менделевия-256! Сначала получались возбужденные ядра менделевия-257, потом они «остывали», выделялся нейтрон, что приводило к менделевию-256.

Таким путем — в течение длительного облучения — было синтезировано всего 17 атомов нового элемента. Но Ученые все же смогли надежно определить, что они действительно принадлежали 101-му элементу.

Существенным достижением, полученным путем бомбардировки мишени ускоренными альфа-частицами, стал синтез наиболее долгоживущего, тяжелого изотопа менделевий-258. Время его жизни, определяемое временем, в течение которого распадается половина из наличных Томов, равняется двум месяцам. В этих опытах мишенью были ядра эйнштейния-255. После поглощения альфа-альфа-частицывозникало ядро менделевия-259, которое, остывая, выделяло один нейтрон и превращалось в ядро менделевия-258.

Начиная со 102-го элемента трудности накопления и тем более идентификации усугубились малым временем жизни новых атомов. Обычные химические методы опознания оказались при этом непригодными. Они занимали слишком много времени.

Адам, Ева и Царь-пушка

Наступил 1956 год. Ученые Объединенного института ядерных исследований в подмосковном городе Дубне, входившие в группу физиков из ряда социалистических стран, руководимую академиком Флеровым, проанализировали ситуацию и нашли новый путь синтеза трансурановых элементов.

Теперь, когда этот путь неоднократно пройден и доказал свою эффективность, идея, положенная в его основу, кажется простой и очевидной. Вот ход мыслей исследователей: прежний путь — бомбардировка мишеней нейтронами, ускоренными дейтонами и альфа-частицами — зашел в тупик, он пройден до конца. Так уже невозможно создать более тяжелые долгоживущие мишени. Не следует ли использовать доступные мишени и применить для бомбардировки мишени ядра более тяжелые, чем альфа-частицы?

Конечно, ускорение тяжелых ядер связано с большими трудностями. Для этого необходимо прежде всего создать источники ионов соответствующих элементов, устройства их ввода в ускоритель и средства управления процессом ускорения.

Первые опыты предусматривали бомбардировку мишеней, содержащих изотопы плутония и кюрия. Снарядами служили ускоренные ионы кислорода и углерода. Метод оказался весьма эффективным. Он был воспринят и в других институтах.

Основные работы по синтезу трансурановых элементов при помощи бомбардировки мишеней тяжелыми ионами проводились в лаборатории ядерных реакций в Дубне и в Радиационной лаборатории имени Лоуренса в Беркли (США). В Дубне для этого применяют большой циклотрон, Царь-пушку. В Беркли для экспериментов служат два линейных ускорителя ионов. Физики назвали их Адам и Ева.

В качестве снарядов обычно применяют ионы бора, углерода, азота, кислорода, фтора, неона, серы, аргона и кальция. Полезным результатом попадания ускоренного ядра в ядро мишени является их слияние. Наряду с этим происходят и другие ядерные реакции, приводящие к синтезу новых ядер, но они труднее поддаются анализу, что осложняет получение уверенных результатов этих реакций.

При проведении бомбардировки тяжелыми ионами необходимо придать им значительную энергию. Она должна быть достаточна для преодоления электростатического барьера, препятствующего проникновению положительно заряженного ядра-снаряда в положительно заряженное ядро-мишень. Высота этого барьера увеличивается вместе с увеличением зарядов ядер-мишеней и ядер-снарядов. Для того чтобы вероятность слияния этих ядер воедино была достаточно велика, необходимо, чтобы энергия ядра-снаряда значительно превосходила электрический барьер. Но при этом ядро-снаряд, проникнув в ядро-мишень, вносит с собой большую избыточную энергию. Поэтому слившееся ядро оказывается сильно возбужденным.

Основным процессом «охлаждения» — снятия возбуждения составного ядра — является процесс деления. Доля составных ядер, остывающих путем испарения нейтронов, оказывается очень малой. Для изотопов 102-го элемента эта доля составляет от миллионной до стомиллионной от общего количества ядер мишени, слившихся с ускоренными ядрами. Остальные испытывают процесс деления, не приводящий к образованию трансурановых элементов, ибо осколки имеют массы, средние между массой ядра-мишени и массой поглощенного ядра-снаряда. Для изотопов 103-го элемента доля ядер, не успевших претерпеть деление, в десять раз меньше, а для изотопов 104-го элемента она близка к десятимиллиардной доле по отношению к процессам, происходящим при образовании 101-го элемента. На лучших из существующих ускорителей рождается за час лишь несколько десятков атомов 102-го элемента и только один атом 103-го элемента за несколько часов.

Первое сообщение о синтезе элемента-102 было сделано в 1957 году международной группой американских, английских и шведских ученых, работавших совместно в Нобелевском институте в Стокгольме. Вторая работа была проведена в 1958 году в Радиационной лаборатории им. Лоуренса в Беркли. Результаты этой работы подтвердили, что 102-й действительно синтезирован.

Однако, когда в Беркли в том же 1958 году был пущен новый линейный ускоритель тяжелых ионов, позволивший получить значительно больше материала для идентификации вновь рожденных элементов, оказалось, что предыдущие результаты ошибочны!

В среде ученых возникла дискуссия, многие ее участники произвели переоценку результатов и пришли к заключению, что элемент-102 в этих экспериментах не был синтезирован.

Однако попытки синтеза элемента-102 в Беркли продолжались с применением других методов идентификации. В это время в исследования включился Институт атомной энергии в Москве. И та и другая группа время от времени сообщали о синтезе и идентификации различных изотопов элемента-102, однако количество синтезированных атомов составляло лишь несколько десятков, а методы опознания не обладали достаточной точностью.

Окончательное решение проблемы элемента-102 было дано в 1964 году в Дубне. При этом применялось несколько взаимно контролировавшихся методов и различные варианты аппаратуры.

В результате были надежно зафиксированы и изучены изотопы элемента-102 с различными массовыми числами от 252 до 256 и показано, что в ранних работах допущены существенные ошибки. После этого в Беркли были синтезированы изотопы элемента-102 с массовыми числами 251 и 257 и подтверждены дубненские данные об остальных изотопах.

Так, в 1966 году была завершена десятилетняя работа, позволившая ученым получить и надежно изучить свойства элемента-102.

Еще большие трудности возникли на пути к элементу-103. В Беркли эти работы велись с 1958 года по 1961 год, причем сообщалось о синтезе изотопов с массовыми числами 257, 259 и 260. Но эти эксперименты не удалось повторить. В позднейших публикациях авторы сообщали о пересмотре толкований ранних экспериментов, однако попытки воспроизвести их в 1965 году в Дубне не дали положительного результата.

Наконец, результаты, полученные в 1965 году в Дубне по изотопу элемента-103 с массовым числом 256, были подтверждены в Беркли. Так мир услышал о новом трансурановом элементе, названном «резерфордий».

Несмотря на очевидное усложнение задачи синтеза и опознания трансурановых элементов при увеличении их атомного номера работы не прекращались. В 1964–1967 годах в Дубне велись интенсивные работы с целью получения следующего элемента, теперь уже 104-го. Синтез осуществлялся бомбардировкой ионами неона-22 мишени, содержавшей атомы плутония-242. Анализ результатов проводился несколькими физическими и химическими методами и увенчался успехом. Исследователи предложили назвать новый трансурановый элемент-104 курчатовием (химический символ Ки) в честь академика И. В. Курчатова.

В 1970 году Дубна подарила миру еще один новый элемент, 105-й, — нильсборий.

Возникает законный вопрос: где природа положила предел синтезу еще более тяжелых трансурановых элементов?

Ответ на этот вопрос еще не известен. Окончательное решение может вынести только опыт. Ясно, что подобные опыты сопряжены с величайшими трудностями. Однако теория может и должна указать экспериментаторам наиболее простые пути. Должна и может с достаточно хорошей достоверностью оценить возможности проведения таких опытов. Об этом мы еще будем говорить чуть дальше.

Прежде чем продолжить путь в трансурановые заповедники природы, следует ответить на другой вопрос: зачем это нужно? Зачем тратить силы и средства на подобные работы?

Уйти от этого вопроса невозможно. Он возникал и возникает вновь. Существует несколько ответов на него.

Первый: это нужно для удовлетворения естественного стремления человека к познанию окружающего мира. Люди будут бороться за знания, жертвуя для этого многим. На основе многовекового опыта мы знаем, что борьба за понимание явлений природы обычно порождает неожиданные открытия, имеющие не только научное, но и практическое значение. Поиск трансурановых элементов не является исключением.

Второй ответ звучит более конкретно. Плутоний является важным источником ядерной энергии. Изотоп уран-235 составляет лишь одну стосороковую часть природного урана. Непосредственное применение урана-238, составляющего остальные сто тридцать девять стосороковых (139/140), проще всего осуществить, предварительно превратив его в плутоний-239. Так и делают в специальных ядерных реакторах. Результат: в сто раз увеличиваются энергетические ресурсы урановых руд. Это, вероятно, сделает рентабельной добычу урана из рассеянных бедных руд, возможно даже из гранита.

Изотопы плутоний-238, кюрий-242 и кюрий-244 служат компактными источниками тепловой энергии, принадлежащими к совершенно новому типу. Эти изотопы испускают только альфа-частицы с большой кинетической энергией, которая переходит в тепло при их поглощении в окружающей среде. Для практического использования важно, что они не испускают опасных для человека гамма-лучей или нейтронов. Существенно, что альфа-частицы поглощаются полностью в тонких слоях вещества, поэтому альфа-радиоактивность безопасна для человека. Выделяющееся при этом тепло можно очень просто и с большим КПД превратить в электрическую энергию при помощи термоэлементов. Такие малогабаритные, легкие источники, способные работать много лет, уже применяются в регуляторах сердечного ритма (кардиостимуляторах), вживляемых в организм больного. Приборы большего размера обеспечивают работу аппаратуры искусственных спутников Земли, автономных метеорологических станций, автономных навигационных буев и т. п.

Возвратимся к первоначальному вопросу: есть ли предел расширения периодической таблицы Менделеева?

Исследование свойств атомных ядер ведет нас к все более глубокому пониманию структуры системы Менделеева и законов симметрии, скрытых в недрах материи.

Хидэки Юкава, японский физик-теоретик, который первым понял секрет строения атомного ядра, объяснил, почему положительный заряд протонов, входящих в ядро,

не разрушает его, — этому препятствуют особые ядерные силы. Эти силы, действующие между протонами и нейтронами в недрах ядра, на малых расстояниях превосходят силы электростатического отталкивания между ними. При дальнейшем уменьшении расстояния они превращаются в силы отталкивания, и это не позволяет протонам и нейтронам слиться в бесконечно малую точку. Ядерные силы одинаково воздействуют и на протоны и на нейтроны. Они таковы, что протоны и нейтроны, находясь внутри ядра, оказываются неразличимыми между собой. Все они становятся одинаковыми частицами — нуклонами, ядерными частицами. А положительный заряд, свойственный свободным протонам, находящимся вне ядра, покидает их внутри ядра и оттесняется к его поверхности.

Ядро ведет себя как капля особой ядерной жидкости, стянутой ядерными силами, подобно тому как капли обычных жидкостей стянуты силами поверхностного натяжения. Так представили модель ядра Бор и Уилер. Ее назвали капельной моделью. Это представление способно объяснить многие свойства ядер и позволяет произвести расчет их основных свойств. В том числе многих важных процессов, таких, как деление ядер. Но известен и ряд фактов, не поддающихся объяснению на основе капельной модели.

В частности, она не позволяет понять, почему по мере увеличения заряда ядра и его массы устойчивость ядер не меняется равномерно и монотонно, а испытывает странные изменения.

Это заставило ученых признать, что капельная модель ядра нуждается в уточнении. Перемежающиеся увеличения и уменьшения устойчивости ядер атомов как бы намекают на существование еще не понятой закономерности, периодичности, подобной той, которую Менделеев выявил для химических свойств атомов.

Магические числа

Теперь мы знаем, что химическая активность и химическая инертность элементов сменяют одна другую по мере продвижения по периодической таблице в результате изменения строения электронных оболочек атомов. Атомы, имеющие заполненные внешние электронные оболочки, особенно инертны. Это инертные газы. Атомы, во внешней оболочке которых лишь один электрон, и те, в которых до заполнения внешней оболочки не хватает одного электрона, особенно активны. Таковы водород и щелочные металлы с одной стороны, и галогены — фтор, хлор, и им подобные, — с другой.

Вероятно, эта аналогия стимулировала И. Иенсена и М. Майера к разработке менее противоречивой модели ядра — она теперь известна как оболочечная модель. Физическая ее интерпретация не объясняет, почему возникают те или иные явления в атоме, но модель описывает их, позволяя таким образом представить себе основные черты явления и даже предсказывать новые события. Обычно для этого физическая модель, плод аналогий и интуиции, должна быть дополнена математической моделью. Если вычисления, проведенные на основе математической модели, позволяют получать результаты, близкие к данным, известным из предыдущих экспериментов, Ученые считают, что модель отображает моделируемый объект. Если же модель позволяет предсказывать новое, 1 затем опыт подтверждает, что предсказание близко к реальности, то ученые склонны считать эту модель — теорией изучаемого явления.

Существо оболочечной модели сводится к следующему: она предполагает, что ядерные частицы — нуклоны — группируются внутри ядерного вещества в некие коллективные образования. По аналогии с электронными оболочками атома такие коллективы получили наименование оболочек.

Ученые понимали, что это лишь отдаленная аналогия. Ведь размеры нуклонов превышают размеры электронов примерно в десять раз (масса нуклона примерно в две тысячи раз больше, чем масса электрона), в то время как диаметр ядра в сто тысяч раз меньше диаметра внешней электронной оболочки атома, независимо от того, является ли атом легким, как атом водорода, или тяжелым, как атом урана. Поэтому нуклоны упакованы в ядро очень плотно. Не претендуя на точность, можно считать, что расстояния между ними лишь вдвое превышают их размеры.

Но тем не менее оболочечная модель позволила написать математические уравнения, неожиданно точно описывающие некоторые известные факты. Так, модель «предсказывала», что ядра, содержащие по 2, 8, 20, 28, 40, 50, 82 и 126 нейтронов и по 2, 8, 20, 28, 50 и 82 протона, устойчивее, чем другие ядра. Однако модель не объясняла, почему именно эти числа соответствуют повышенной устойчивости ядер. Поэтому полученные числа получили наименование магических чисел, а соответствующие ядра называют магическими ядрами. Повышенная стабильность этих ядер была известна и ранее. Это был любопытный факт, нуждающийся в объяснении, но появление таких чисел из гипотезы, основанной на неясной аналогии, казалось почти чудом.

Еще более чудесными были свойства «дважды магических ядер», тех, в которых количество нейтронов и протонов одновременно характеризуется магическим числом таковы ядра гелия (два нейтрона и два протона), ядра кислорода (по 8 нейтронов и протонов), ядра кальция (по 20 нейтронов и протонов). Эти ядра действительно устойчивее всех остальных легких ядер.

Для атомов элементов, расположенных в периодической системе до кальция, совпадение расчетов, основанных на оболочечной модели, с экспериментом было потрясающе точным. После кальция оно быстро ухудшалось. Расхождение с опытом показывало, что оболочечная модель хорошо отображает реальность только для легких ядер. Но не учитывает тех процессов, роль которых возрастает по мере увеличения массы ядер, по мере увеличения количества содержащихся в них нуклонов.

Естественно, это повлекло за собой попытки усовершенствовать оболочечную модель. Пришлось уточнить закон изменения сил взаимодействия нуклонов на малых расстояниях, принять во внимание процессы, не учтенные в первоначальной модели, например увеличение роли электростатического отталкивания по мере увеличения числа протонов в ядре. Все это привело к усложнению модели и соответствующих уравнений, затруднило их решение. Но эта работа была выполнена.

Наградой физикам-теоретикам за титаническую работу было дальнейшее приближение получаемых результатов к опытным фактам и предсказание новых возможностей. Прежде всего они уточнили величины масс стабильных ядер. Оказалось, что стабильной является комбинация 30 нейтронов и 26 протонов, что соответствует ядру атома железа, порядковый номер которого 26, а масса 56. Это Действительно наиболее стабильное из всех известных ядер. Второй существенный результат — предсказание существования стабильного ядра элемента— 114 с числом нейтронов 184, а значит, с массой 298, существенно превышающей массы трансурановых элементов, синтезированных до сих пор.

Первый намек на то, что эксперимент подтверждает это предсказание, дали опубликованные Г. Н. Флеровым и П. Перелыгиным результаты изучения спонтанного деления свинца. Ожидалось, что период полураспада свинца близок к 1040 годам (огромное число, в котором после единицы стоит 40 нулей. Это миллиард, взятый четырежды по миллиарду раз и умноженный еще на 10000). Опыт привел к много меньшему числу — 3 1020 лет («Всего» миллиард миллиардов, умноженный на 300). В качестве возможного объяснения колоссального расхождения результатов опыта с прогнозом авторы выдвинули гипотезу о присутствии в природном свинце незначительной примеси экасвинца (элемента-114).

Невозможно пытаться синтезировать этот элемент при помощи существующих ускорителей — последовательное прибавление нейтронов или ускоренных ядер привело бы к уже известным или близким к ним ядрам, подверженным чрезвычайно быстрому делению.

Возрастание трудностей на этом пути иллюстрирует простое сопоставление сроков работы: на синтез тринадцати трансурановых элементов потребовалось тридцать лет. На синтез следующих шести (от элемента-102 до элемента-107) ушло еще двадцать лет, наполненных величайшими усилиями!

Позже других успех — но успех очень значительный — пришел к ученым города Дортмунда в ФРГ, где построен весьма совершенный линейный ускоритель тяжелых ионов. При длине 125 метров он разгоняет интенсивные пучки ионов до скорости 30 000 километров в секунду, что составляет десятую долю скорости света. Используя метод, предложенный в Дубне, они бомбардировали ионами железа ядра свинца. При этом было зафиксировано рождение ядер элемента-109, а затем и элемента-108.

Это выдающееся достижение приобретает особый интерес потому, что время жизни этих элементов оказалось намного большим, чем у предыдущих элементов. Современные теории не предсказывают такого эффекта. Теоретики еще не успели найти ему объяснение.

Острова устойчивости

Окрестность элемента-114, экасвинца ученые называют островом устойчивости. Проникнуть к нему через море неустойчивости, все более углубляющееся при переходе от урана-238 к первому трансурановому элементу нептунию и к последующим трансурановым элементам, можно, лишь разработав совершенно новые «средства передвижения», новые методы.

Не означает ли открытие дортмундских физиков, что самая глубокая область моря неустойчивости перейдена и физики ступили на прибрежный шельф острова устойчивости? Ответ на этот вопрос зависит от того, удастся ли подтвердить этот результат в других лабораториях.

Неожиданный путь «мореплавателям» указал Флеров. Он решил привлечь на помощь процесс деления ядер, процесс, являющийся основным препятствием на пути методов, применяемых ныне.

Флеров исходил из того, что при делении ядер изредка возникают осколки, масса которых значительно превосходит половину массы делящегося ядра. Это значит, что имеется реальная, хотя и малая, вероятность распада ядра на части, сильно различающиеся между собой по массе. Для того чтобы использовать эту возможность, следует научиться получать очень тяжелые ядра. Пусть они окажутся неустойчивыми и быстро распадаются путем деления или путем многократного альфа-распада. Пусть деление приводит большей частью к ядрам с зарядами, близкими к половине суммарного заряда ядра-мишени и ядра-снаряда. Нужно лишь научиться надежно фиксировать редкие случаи, при которых неустойчивое промежуточное ядро распадается на две части, сильно различающиеся по заряду. И искать при этом среди них ядра элемента-114, охлаждающиеся за счет испарения нейтронов. Можно надеяться и на появление осколков, сильно различающихся по массе, а затем увеличивающих свой положительный заряд путем серии бета-распадов или уменьшающих свой заряд за счет альфа-распадов. Необходимо быстро и точно идентифицировать новые трансурановые элементы.

Конечно, вероятность положительного результата окажется наибольшей при бомбардировке ядер урана ядрами урана (суммарный заряд ядра, получающегося при их слиянии, равен 184, а его масса равна 476) или ядрами ксенона (суммарный заряд— 146). Ксенон имеет меньший заряд, чем многие другие элементы, но он является единственным устойчивым тяжелым газом (самый тяжелый газ — радон — радиоактивен и распадается очень быстро). Именно поэтому, наряду с ураном, Флеров указал на ксенон. Он легче поддается ионизации, чем остальные тяжелые элементы, поэтому ионы ксенона удобнее ускорять до энергий, достаточных, чтобы его ядро слилось с ядром урана, несмотря на взаимное отталкивание их положительных зарядов. При бомбардировке урана ксеноном-132 можно вызвать деление ядер урана. Но не просто деление, а такое, при котором наиболее вероятная масса тяжелых осколков с зарядом 114 равна по оценкам 305, а для его «охлаждения» достаточно испарение от четырех до шести нейтронов.

Удастся ли синтез экасвинца, покажет будущее. Но окрестности экасвинца являются не единственным островом устойчивости. За ним, еще дальше от берега, где расположен устойчивый уран-238, оболочечная модель ядра позволяет надеяться на обнаружение второго острова устойчивости — вблизи элемента, ядра которого имеют заряд около 126.

Для их синтеза можно подобрать мишень и снаряд так, чтобы ядро, получающееся при бомбардировке, было возбуждено не сильно и могло охладиться путем испарения небольшого числа нейтронов. Например, бомбардируя ядра тория-232 ядрами криптона-84, можно получить ядро элемента-126, охлаждающееся испарением четырех нейтронов так, что масса ядра синтезируемого элемента оказывается равной 312.

Ученые понимают, что в их работе «перелеты» — получение атомных ядер с номером, большим 114 (или 126), менее опасны, чем «недолеты» — получение атомных ядер с меньшим номером. Ведь «корректировка огня» — приближение к магическому ядру — определяется радиоактивными процессами. В случае «перелета» — это альфа-распад, уменьшающий атомный номер сразу на две единицы, а в случае «недолета» работает бета-распад, увеличивающий атомный номер только на одну единицу. Существенно и то, что альфа-распады более вероятны, а значит, происходят в тяжелых ядрах чаще, чем бета-распады, обусловленные слабым взаимодействием.

В этой связи нельзя не упомянуть еще об одном достижении, полученном на дортмундском ускорителе. Дортмундские ученые наблюдали интересные явления, происходящие, когда ядро-снаряд налетает на ядро-мишень не прямо в лоб. При косом соударении возникает узкая «прицельная зона», в которой взаимодействующие ядра образуют неустойчивую систему из двух компонентов, вращающихся вокруг общего центра масс. Эту систему можно рассматривать как особое, сильно возбужденное состояние суммарного ядра, при котором ядерные силы притяжения нуклонов в течение некоторого времени удерживают исходные ядра и противостоят кулоновским силам отталкивания одноименных зарядов и центробежным силам, стремящимся разрушить это состояние.

Такое сильно возбужденное состояние можно исследовать теоретически при помощи оболочечной модели ядра. При осуществлении эксперимента возможно предсказанное затягивание электронов, принадлежащих снаряду — иону урана и мишени — атому урана, внутрь зоны, Принадлежащей возбужденному суммарному ядру.

Теоретики и ранее указывали на возможность проникновения внутренних электронов тяжелых атомов в зону ядра. Малая вероятность такого явления не позволила до сих пор уверенно зафиксировать его в эксперименте. Совсем недавно в Дортмунде были проведены опыты с бомбардировкой ядер урана ионами урана. Энергия ускорителя недостаточна для преодоления кулоновского отталкивания обоих ядер при лобовом соударении. Но ученым удалось зафиксировать возникновение сильно возбужденного состояния ядерной материи при суммарном заряде 184. Исследования этого экзотического ядра продолжаются.

Интересной деталью эксперимента с образованием ядра элемента-184 является одновременное наблюдение электрон-позитронных пар. До сих пор рождение электрон-позитронных пар наблюдалось только в процессах с участием фотонов, обладающих очень большой энергией.

Работая над синтезом трансурановых элементов, физики предпринимают и попытки найти такие ядра в природных условиях. Об одной такой попытке — исследовании времени жизни ядер свинца — уже шла речь. Эти попытки продолжаются, ученые стремятся повторить полученные результаты другими методами и повышают точность измерения, устраняют все мешающие эффекты, например возникающие вследствие малых примесей других радиоактивных элементов.

Поиски трансурановых ведутся и в космических лучах: если эти элементы рождаются при взрывах сверхновых звезд или в ходе других подобных катастрофических процессов, то они должны достигать Земли.

Удача досталась американским физикам. Изучая следы космических частиц в толстослойных фотографических эмульсиях, поднятых за пределы земной атмосферы, они зафиксировали три следа частиц, имеющих заряд, превышающий 100, и один след с зарядом более 110. Однако такие единичные случаи не могут считаться достаточными для уверенности в правильности истолкования опытов.

В 1980 году физики были взволнованы сообщениями о том, что в кристалле оливина метеоритного происхождения обнаружен след ядра, содержащего более 110 протонов, то есть ядра элемента, расположенного на дальнем «шельфе пролива нестабильности». Подобное сообщение появилось и в 1983 году, но происхождение этих следов еще остается неясным.

В начале восьмидесятых годов появились сообщения о синтезе элемента-106 и элемента-107. В 1983 году прошел слух об обнаружении элемента-109, в 1984 году об идентификации элемента-108. Физики проявляют при этом осторожность, связанную с тем, что в прошлом не все опубликованные результаты оказались достоверными. Пожалуй, самой сенсационной ошибкой была публикация в авторитетном американском журнале «Письма в Физическое обозрение». В 1976 году группа квалифицированных ученых сообщила об обнаружении элемента-116 и элемента-126, расположенных на таинственных островах стабильности. Однако вскоре пришлось признать, что в работе была допущена ошибка.

Ученые считают задачу синтеза и поиска неизвестных трансурановых элементов весьма важной для подтверждения и уточнения теорий строения атомных ядер. Но помимо этой задачи, у них есть и другие. Периодический закон изменений химических и физических свойств элементов, установленный Менделеевым, как обобщение опыта нашел, как мы знаем, свое обоснование в более фундаментальных физических законах. Например, в квантовых законах взаимодействия атомных ядер с электронами, частности в принципе запрета Паули, объясняющего порядок заполнения электронных оболочек атома.

Магические числа, получаемые из оболочечной модели ядра, хорошо совпадающие с опытом в широком диапазоне ядерных масс, являются доказательством того, что модель учитывает основные процессы, происходящие внутри ядра.

Но эта модель требует своего обоснования из более фундаментальных законов, подобно тому как применение принципа запрета обосновало периодическую систему элементов.

Мы знаем, что нуклоны удерживаются внутри ядра особыми, весьма большими ядерными силами. Учет действия электрических сил требуется только для уточнения соответствия расчета и опыта.

Ядерные силы, введенные Юкавой, возникают в результате того, что нуклоны постоянно обмениваются между собой особыми частицами — пионами (раньше их называли пи-мезонами). Зависимость ядерных сил от расстояния была первоначально угадана Юкавой, а затем уточнена исходя из опытов. Именно ядерные силы явились основой математического описания капельной модели, а затем и оболочечной модели ядра. Казалось, программа выполнена. Силы, действующие между нуклонами, познаны, уравнения написаны, их решения достаточно полно совпадают с опытом. Но… Наука притягательна тем, что она всегда в пути, в движении. Ученые не успокаиваются на достигнутом. Ответив на один вопрос, они задаются следующим.

Что там, в глубине?

Физики не могут остановиться на пути познания природы. Они хотят знать, как возникают ядерные силы, почему они именно таковы, какими мы их видим в различных экспериментах.

Так продолжается последовательное углубление внутрь атома, начатое Менделеевым.

Здесь уже нет места для того, чтобы следовать за учеными в глубины нуклонов. Отложим это на дальнейшее. Но чтобы у читателя не возникло чувство неудовлетворенности, сделаем краткое предварительное описание того, к чему ученые пришли за последнее время.

Оказалось, что нуклоны, то есть протоны и нейтроны, не являются воистину элементарными частицами. Они состоят или, вернее, образованы из более элементарных частиц, название которых — кварки. Известно, что в природе существуют шесть различных кварков. Более того, они (каждый из них) могут находиться в различных состояниях. Между кварками действуют мощнейшие силы, удерживающие их внутри нуклонов и внутри других родственных частиц, составляющих вместе с нуклонами целое семейство, имеющее общее название — адроны.

Взаимодействие между кварками называется сильным взаимодействием. Оно, подобно ядерным силам, реализуется путем обмена особыми частицами, переносчиками сильного взаимодействия. Эти частицы названы глюонами (от английского «глю» — «клей»). Они как бы склеивают кварки, образуя таким путем протоны, нейтроны и другие адроны.

Теперь осталось узнать немногое. Необходимо понять, существует ли связь между сильными взаимодействиями и ядерными силами?

Эта задача еще не решена. Это дело будущего. Но уже сейчас ученые работают, следуя по многообещающему пути — пути аналогий. Проследим за ходом их мыслей.

Атом образован за счет электростатических сил, действующих между ядром и электронными оболочками. В нормальном состоянии атом нейтрален. Это значит, что положительный заряд ядра скомпенсирован суммой отрицательных зарядов электронов так хорошо, что издали невозможно обнаружить присутствие в атоме заряженных частиц. Мы знаем, что они есть, что ядро и электроны заряжены. Нужно лишь сделать еще шаг. Нужно изучить свойства атомов, наблюдая их с близкого расстояния. При этом, конечно, картина изменится.

Здесь физика призывает на помощь химию, можно сказать — физика порождает химию. Даже нейтральные атомы (если это не атомы инертных газов с их замкнутыми внешними электронными оболочками) взаимодействуют между собой так, чтобы обеспечить еще более полную компенсацию электрических зарядов и спинов электронов. Так, в результате взаимодействия электронов двух или нескольких атомов образуются молекулы, еще более скомпенсированные, еще более нейтральные структуры. Но и здесь компенсация оказывается не идеальной. Если две молекулы сближаются между собой очень тесно, то они «чувствуют», что их электрические поля или силы скомпенсированы не полностью. Остатки этих сил притягивают молекулы так сильно, что они объединяются в большие коллективы.

Если температура не слишком велика, объединение продолжается. Молекулы газов, не чувствующие друг друга на расстоянии, взаимодействующие в газах только при случайных соударениях, при понижении температуры образуют жидкость, а при еще более низких температурах — твердые тела. Тепловое движение оставляет молекулам, входящим в состав жидкостей и твердых тел, какую-то долю независимости. В жидкостях они могут перемещаться и вращаться, в твердых телах они способны колебаться относительно положений своего равновесия, относительно своих соседей. Те из них, что находятся на поверхности, могут даже оторваться от коллектива — испариться.

Но если охлаждение происходит медленно, то из жидкости возникают кристаллы. Оказывается, что и за пределы молекул выходят достаточно сильные остатки их внутренних электрических полей. Полей, которые скомпенсировались при образовании атомов и еще полнее скомпенсировались при образовании молекул. Теперь компенсируются остатки, выходящие за пределы молекул. Они заставляют молекулы выстраиваться в регулярные структуры, образующие кристаллы. Во многих отношениях кристалл ведет себя как огромная молекула, состоящая из большого количества однотипных молекул или ионов.

Опираясь на нашу аналогию, обратимся снова к кваркам. Нечто подобное происходит и в тех глубинах материального мира, где действуют кварки и глюоны.

Под влиянием сильного взаимодействия вполне определенные комбинации кварков и глюонов образуют все известные ядерные частицы — протоны, нейтроны и остальные адроны. При этом кварки обмениваются глюонами аналогично тому, как протоны и нейтроны, обмениваясь пионами, образуют ядра атомов. В ходе такого обмена сильные взаимодействия в существенной мере компенсируются. Их невозможно обнаружить на большом расстоянии от нуклона. Ядерные силы являются нескомпенсированным остатком сильных взаимодействий. На близких расстояниях ядерные силы, эти остатки сильных взаимодействий, много сильнее сил электрического отталкивания. Поэтому они удерживают протоны и нейтроны внутри ядер. Они могут привести и к слиянию ядер, если эти ядра окажутся на достаточно близком расстоянии. Например, при сближении ядер-снарядов с ядрами-мишени.

То, что изложено здесь, это картина, набросанная на основе аналогий. Ученые создают при помощи этой грубой модели все более точные модели, которые рано или поздно превратятся в математические модели и уравнения. Решение этих уравнений позволит объяснить структуру ядер, Порядок перехода от одночастичного ядра атома водорода — протона — к двухчастичному (протон плюс нейтрон) ядру атома дейтерия — дейтону, к трехчастичному (протон плюс два нейтрона) ядру атома трития — тритону или ядру гелия-3, содержащему два протона и один нейтрон, и так далее, к урану и трансурановым элементам.

Когда такая математическая модель будет построена и соответствующие уравнения будут решены, полученные решения позволят наконец понять, почему ядра образуются такими, какими мы их видим в соответствии с таблицей Менделеева. Мы ответим на вопрос: где предел этой таблицы? Мы будем знать, какие трансурановые элементы еще можно синтезировать. Действительно ли существует остров или острова стабильности и, если они существуют, то как следует до них добираться?..

Мы рассказали только начало истории познания строения материи. Мы оттолкнулись только от одного удивительного предчувствия — прозрения гениального русского химика Менделеева. Эта история продолжается, она вовлекает в сферу своих интересов все новые разумы, она вдохновляет на научные свершения юных — за ними следующее слово, за ними новые предчувствия и свершения.

ГЛАВА 2