Единство — страница 2 из 8

ЯЗЫК МОЛЕКУЛ

Национальной науки нет, как нет национальной таблицы умножения.

А. П. Чехов

Цвет неба

Объяснить происхождение цвета неба старались уже средневековые ученые. Некоторые из них предполагали, что синий цвет есть истинный цвет воздуха или отдельных его частей. Другие считали, что настоящий цвет неба черный, такой, каким он кажется ночью. Они утверждали, что голубая окраска, видимая днем, есть результат смешения белого цвета солнечных лучей и черного межзвездного пространства.

Этим вопросом заинтересовался и великий английский ученый Исаак Ньютон. Он сразу отверг предшествующие теории. Проводя многочисленные опыты со смешением цветов, Ньютон убедился в том, что смесь белого и черного цвета никогда не образует голубого. Наблюдения заставили его отбросить и предположение о том, что синий цвет есть истинный цвет воздуха. Ведь в этом случае Солнце и Луна на восходе и закате должны казаться не красными, как это есть в действительности, а голубыми. Такими выглядели бы и вершины отдаленных снежных гор. Если бы воздух был окрашен даже очень слабо, то толстый слой его по своим свойствам был бы таким же, как окрашенное стекло. Но если смотреть сквозь окрашенное стекло, то все предметы кажутся такого же цвета, как это стекло. Однако отдаленные снежные вершины представляются нам розоватыми, а вовсе не голубыми.

Ньютон предположил, что голубая окраска неба и обыкновенная радуга вызываются одними и теми же причинами. Он считал, что это результат особого рассеивания света на мелких водяных пузырьках, которые, по его мнению, всегда присутствуют в воздухе.

Радуга действительно образуется при прохождении солнечных лучей через рои дождевых капель. Свет Солнца входит в каплю, преломляясь на ее поверхности, отражается от ее задней границы и вновь преломляется, выходя из капли. При этом белый свет, излучаемый Солнцем, распадается на составляющие его цвета. Каждый из них распространяется в определенном направлении. Семь цветов радуги кажутся исходящими из узких дугообразных участков небосвода. При этом Солнце находится за спиной наблюдателя.

Но гипотеза Ньютона о происхождении голубого цвета неба теперь кажется нам очень странной. Известно, что в ясную погоду, когда небо сияет особой голубизной, в нем нет водяных капель. Однако в то время считалось, что водяные пары собираются в воздухе в виде маленьких пузырьков, напоминающих мельчайшие мыльные пузыри. Ньютон, как и другие ученые того времени, думал, что эти пузырьки в течение длительного времени плавают в воздухе.

Много позже идею Ньютона опровергли метеорологи. Наблюдения и измерения доказали, что водяных пузырьков, присутствием которых Ньютон объяснял окраску неба, в действительности не существует.

В таком состоянии находился вопрос о голубом цвете неба, когда за его разрешение взялся английский физик Релей.

Пылинки вместо пузырьков

Релей занимался оптикой, а люди, посвятившие свою жизнь науке о свете — оптике, много времени проводят в темноте. Посторонний свет мешает оптическим исследованиям, поэтому окна оптической лаборатории почти всегда затянуты черными светонепроницаемыми шторами.

Человеку, впервые входящему в оптическую лабораторию, прежде всего бросаются в глаза пучки света, вырывающиеся из приборов. Эти пучки четко видны в окружающей тьме. Они наглядно подтверждают, что свет распространяется прямолинейно.

Однако для того чтобы убедиться в прямолинейности распространения света, не обязательно заходить в оптическую лабораторию. То же самое можно увидеть в солнечный день в любой затемненной комнате. Через щели ставней или занавесей пробиваются яркие солнечные лучи, пересекающие комнату и падающие на стены или на пол.

Прямолинейность распространения света стала известной людям в глубокой древности именно из таких простейших наблюдений. Можно считать твердо установленным, что свет в пустоте распространяется по прямой линии.

Но как согласовать с прямолинейным распространением света тот факт, что мы видим световые лучи, глядя на них сбоку? Ведь солнечный свет в темной комнате идет от щели в ставне к полу. Наш глаз расположен в стороне от его пути, и, тем не менее мы видим этот свет. Мы видим и столб света от прожектора, направленного в небо. Значит, часть света отклоняется от прямолинейного пути и распространяется в стороны, попадая в наши глаза.

Присмотревшись, легко обнаружить множество пылинок, непрерывно кружащихся на пути световых лучей. Некоторые из них сравнительно велики. Большинство же имеет очень малые размеры. Все они ярко освещены и поэтому выделяются на темном фоне. В наш глаз попадают лучи, рассеиваемые пылинками, лучи, которые, встречая препятствия, поворачивают свой путь и распространяются по прямой от рассеивающей пылинки к нашему глазу. Возможно, что вид пылинок, танцующих в световом луче, послужил Релею исходной точкой для построения новой теории происхождения окраски неба.

В 1871 году Релей высказал предположение, что голубой цвет неба вызван рассеянием солнечных лучей на малых частицах, плавающих в воздухе. Рассеяние света малыми частицами было открыто еще в 1851 году физиком-экспериментатором Е. Брюкке. Математический расчет показал Релею, что маленькие частицы, плотность которых отличается от плотности воздуха, рассеивают свет тем сильнее, чем короче длина волны света. Поэтому интенсивность рассеянного света чрезвычайно быстро возрастает с уменьшением длины волны. Если размеры пылинки меньше, чем длина световой волны, то при уменьшении длины волны света в 2 раза интенсивность рассеянного света возрастает в 16 раз.

Длина волны фиолетового света примерно вдвое меньше, чем длина волны красного света, — значит, фиолетовые лучи рассеиваются в 16 раз сильнее, чем красные. Вот объяснение голубого цвета неба, красных зорь и голубой дымки!

На восходе и закате, когда солнечные лучи проходят через наибольшую толщу воздуха, фиолетовые и синие лучи, говорит теория Релея, рассеиваются наиболее сильно. При этом они отклоняются от прямого пути и не попадают в глаза наблюдателю. Наблюдатель видит главным образом красные лучи, которые рассеиваются гораздо слабее. Поэтому на восходе и закате Солнце кажется нам красным. По этой же причине кажутся розовыми и вершины отдаленных снежных гор. Глядя на чистое небо, мы видим сине-голубые лучи — коротковолновую часть солнечного света, — отклоняющиеся от прямолинейного пути вследствие рассеяния и попадающие в наши глаза. Голубая дымка, которую мы иногда видим у горизонта, тоже является результатом преимущественного рассеяния коротковолнового света.

Релей показал, что появление в воздухе частиц, размеры которых превосходят длину волны света, ослабляет голубой цвет неба. Рассеяние света на крупных частицах слабее зависит от длины волны и поэтому не вызывает изменения его окраски. При рассеянии света на крупных частицах как рассеянный, так и прошедший свет остается белым. Поэтому появление в воздухе крупных частиц сообщает небу белесый цвет, а скопление большого количества мелких капелек обусловливает белый цвет облаков и тумана.

Мельчайшие частицы дыма, поднимающиеся над концом горящей папиросы, имеют размеры меньшие, чем длина световой волны, и, в соответствии с теорией Релея, рассеивают преимущественно фиолетовый и синий свет. Но при прохождении через узкие каналы в толще табака частицы дыма склеиваются между собой (коагулируют), объединяясь в более крупные комочки. Размеры многих из них становятся больше, чем длина волны видимого света, и они рассеивают все волны света примерно одинаково. Именно поэтому дым, выходящий из мундштука папиросы, Кажется белесым.

Первоначальная теория Релея еще основывалась на отвергнутом впоследствии представлении об упругом светоносном эфире. В 1899 году он сформулировал задачу о голубом цвете неба применительно к электромагнитной теории света и решил ее с такой полнотой, что она лежит в основе всех современных представлений о рассеянии света малыми частицами.

Но, зная из опыта, что голубой цвет неба тем более чист и ярок, чем чище атмосфера, Релей пришел к заключению, что окраска неба обусловлена не загрязнениями, а самими молекулами воздуха. Молекулы воздуха — вот те мельчайшие неоднородности, которые рассеивают свет Солнца. А так как молекулы очень малы, то они рассеивают волны фиолетового и голубого света гораздо сильнее, чем все остальные. Эта теория, построенная для одиночных молекул, могла быть применена к газу, только если он очень разрежен, то есть его молекулы расположены так далеко одна от другой, что они рассеивают свет совершенно независимо. Но в действительности в каждом кубическом сантиметре воздуха так много молекул и они расположены так близко одна к другой, что световые волны, рассеянные в стороны отдельными молекулами, должны полностью гасить друг друга. В соответствии с расчетом должна оставаться только волна, бегущая вперед без всякого рассеяния. Но этот расчет, опровергающий теорию Релея, в свою очередь имел слабое место: он был проведен лишь для неподвижных молекул. В случае движущихся молекул, как казалось Релею, все должно быть иначе. Он был убежден, что неизбежные тепловые движения молекул препятствуют взаимному гашению рассеянных волн. Поэтому Релей думал, что голубой цвет неба все же может быть объяснен рассеянием света на молекулах.

Впоследствии мы еще вернемся к этому вопросу. Сейчас для нас важно лишь то, что релеевская теория рассеяния света молекулами связала яркость свечения неба с числом молекул, содержащихся в каждом кубическом сантиметре воздуха. Это дало возможность проверить правильность теории на опыте. Впервые такой опыт выполнил в 1906 году американский астрофизик Аббо, изучавший голубое свечение неба в обсерватории на горе Маунт-Вильсон. Обработка результатов измерения яркости свечения неба показала, что в каждом кубическом сантиметре содержится огромное количество молекул. Полученное число обычно записывают так: 27 1018 (после числа 27 следует приписать 18 нулей). Это значит, что в каждом кубическом сантиметре воздуха содержится 27 миллиардов раз по миллиарду молекул. Если раздать молекулы, содержащиеся в одном кубическом сантиметре воздуха, всем людям, населяющим земной шар, то каждому достанется по 5 с лишним миллиардов этих молекул.

Впоследствии аналогичные измерения неоднократно с успехом повторялись другими учеными. Полученный результат был чрезвычайно важным. Дело в том, что количество молекул в кубическом сантиметре газа можно измерять по крайней мере двумя десятками разных способов на основе совершенно различных и независимых между собой явлений. Все они приводят к близко совпадающим результатам и дают число, называемое числом Лошмидта. Оно с большой точностью совпадает с числом, полученным при измерении свечения неба. Таким образом, измерения показали, что молекулярное рассеяние света действительно существует.

Казалось, теория Релея была надежно подтверждена опытом; все ученые считали ее безупречной. Она стала общепризнанной и вошла во все учебники оптики.

Тем более удивительно, что в 1907 году на страницах известного научного журнала вновь был поставлен вопрос: почему же небо голубое?

Тайна природы раскрыта

Человеком, указавшим на недостаточность общепризнанной теории, был замечательный русский ученый Леонид Исаакович Мандельштам.

Вот как охарактеризовал Л. И. Мандельштама академик С. И. Вавилов:

«Природа одарила Леонида Исааковича совсем необычным прозорливым тонким умом, сразу замечавшим и понимавшим то главное, мимо чего равнодушно проходило большинство. Так была понята флуктуационная сущность рассеяния света, так появилась идея об изменении спектра при рассеянии света, ставшая основой открытия комбинационного рассеяния».

История раскрытия тайны голубого цвета неба прекрасно иллюстрирует слова академика С. И. Вавилова.

Мандельштам обнаружил принципиальную трудность в самой основе теории Релея. Он показал, что простой факт движения молекул не может воспрепятствовать взаимному гашению световых волн, рассеиваемых в стороны отдельными молекулами. Дело в том, что если газ однороден и плотность его достаточно высока, то движение молекул не изменяет средней плотности газа. Оно ведет лишь к замене одних молекул другими, а так как молекулы одинаковы, то такая замена не приводит ни к какой существенной разнице. В этих условиях движущиеся молекулы рассеивают свет так же, как неподвижные, а значит, волны света, рассеянного отдельными молекулами, будут погашены в результате их взаимодействия.

Проще всего уяснить себе суть дела на примере волн на поверхности воды. Если волна встречается с неподвижными или плавающими предметами (сваи, бревна, лодки и т. п.), то во все стороны от этих предметов разбегаются мелкие волны. Это есть не что иное, как рассеяние. Часть энергии падающей волны расходуется на возбуждение вторичных волн, которые вполне аналогичны рассеянному свету в оптике. При этом первоначальная волна ослабляется — она затухает.

Плавающие предметы могут быть намного меньше, чем длина волны, бегущей по воде. Даже мелкие зерна будут вызывать вторичные волны. Конечно, по мере уменьшения размеров частиц образуемые ими вторичные волны ослабевают, но они все же будут забирать энергию основной волны.

Примерно так представлял себе процесс ослабления световой волны при прохождении ее через газ Планк, но роль зерен у него играли молекулы газа.

Процесс рассеяния света, несомненно, гораздо сложнее, чем рассеяние волн на воде, — ведь свет это не механические волны, а электромагнитные колебания, — но наблюдение над обычными волнами помогает уяснить законы оптики.

Планк поставил своей целью с помощью математического расчета объяснить причину ослабления света при прохождении его через оптически однородное вещество, то есть через вещество, не обладающее мутностью. Для этого он построил теорию, в которой принималось за основу, что сами молекулы вещества, через которое проходит свет, являются источниками вторичных волн. На создание этих вторичных волн, утверждал он, тратится часть энергии проходящей волны, которая при этом ослабляется. Мы видим, что эта теория основывается на релеевской теории молекулярного рассеяния и опирается на ее авторитет. Этой работой Планка заинтересовался Мандельштам.

Ход мыслей Мандельштама также можно пояснить с помощью примера волн на поверхности воды. Нужно лишь рассмотреть его более внимательно. Уже указывалось, что даже мелкие зерна, плавающие на поверхности воды, являются источниками вторичных волн. Но что будет, если насыпать эти зерна так густо, что они покроют всю поверхность воды? Тогда окажется, что отдельные вторичные волны, вызванные многочисленными зернами, будут складываться так, что они полностью погасят те части волн, которые бегут в стороны и назад, и рассеяние прекратится. Останется лишь волна, бегущая вперед. Она побежит вперед, совершенно не ослабляясь. Единственным результатом присутствия всей массы зерен окажется некоторое уменьшение скорости распространения первичной волны. Особенно важно, что все это не зависит от того, неподвижны ли зерна или они движутся по поверхности воды.

Мандельштам произвел математический расчет для случая, когда число молекул в воздухе так велико, что даже на таком маленьком участке, как длина световой волны, содержится очень большое число молекул. Оказалось, что при этом вторичные световые волны, возбуждаемые отдельными молекулами, складываются так же, как волны в примере с зернами на поверхности воды. Значит, в этом случае световая волна распространяется без рассеяния и ослабления, но с несколько меньшей скоростью. Это опровергало теорию Релея, считавшего, что движение рассеивающих частиц во всех случаях обеспечивает рассеяние волн и основанную на ней теорию Планка.

Так под фундаментом теории рассеяния был обнаружен песок. Все величественное здание заколебалось и грозило рухнуть.

Но как обстоит дело с определением числа Лошмидта из измерений голубого свечения неба? Ведь этот опыт подтверждал релеевскую теорию рассеяния?

«Это совпадение должно рассматриваться как случайное», — писал Мандельштам в своей работе «Об оптически однородных и мутных средах».

Мандельштам показал, что беспорядочное движение молекул не может сделать газ однородным. Наоборот, в реальном газе всегда имеются мельчайшие разрежения и уплотнения, образующиеся в результате хаотического теплового движения. Вот они-то и объясняют рассеяние света. В той же работе Мандельштам писал: «Если среда оптически неоднородна, то, вообще говоря, падающий свет будет рассеиваться и в стороны».

Что же является причиной этой оптической неоднородности?

Для того чтобы ответить на вопрос, снова вспомним, что молекулы всех веществ не неподвижны. Даже если в веществе не происходит видимых движений, его молекулы непрерывно движутся. Это движение молекул называется тепловым движением, так как оно вызывает у нас ощущение тепла. Чем сильнее движутся молекулы вещества, тем более теплым оно нам кажется.

В газах и жидкостях молекулы не закреплены в определенных местах пространства, как это имеет место в твердых телах. Поэтому молекулы беспорядочно перемещаются, сталкиваясь друг с другом и описывая причудливые зигзагообразные линии. Беспорядочный характер этого движения приводит к тому, что в различных местах пространства на короткое время скапливается больше молекул, чем в других. Однако эти уплотнения быстро рассеиваются, возникая в других местах. Так же беспорядочно возникают и небольшие кратковременные разрежения.

Большая заслуга Мандельштама заключается в том, что он доказал, что предположение об однородности газа несовместимо с фактом рассеяния в нем света. Он понял, что голубой цвет неба доказывает, что однородность газов только кажущаяся. Это значит, что газы однородны только при исследовании грубыми приборами, такими, как барометр, весы или другие приборы, на которые воздействуют сразу многие миллиарды молекул. Но световой луч ощущает несравнимо меньшее количество молекул, измеряемое лишь десятками тысяч. И этого достаточно, чтобы бесспорно установить, что плотность газа непрерывно подвергается маленьким местным изменениям. Поэтому однородная, с нашей «грубой» точки зрения, среда в действительности неоднородна. С точки зрения света она кажется мутной и поэтому рассеивает свет.

Так была окончательно объяснена причина голубого цвета неба.

Случайные местные изменения свойств вещества, образующиеся в результате теплового движения молекул, теперь носят название флуктуации. Выяснив флуктуационное происхождение молекулярного рассеяния света, Мандельштам проложил дорогу новому методу исследования вещества — флуктуационному, или статистическому, методу, впоследствии развитому Смолуховским, Лорентцом, Эйнштейном и им самим в новый крупный отдел физики — статистическую физику.

Казалось бы, что может быть связано между собой меньше, чем обыкновенный камертон и теория рассеяния света?

Сейчас мы расскажем о прекрасном опыте с камертоном, который придумал и показывал на своих лекциях Мандельштам.

Этот опыт предназначен для демонстрации явления модуляции. Модуляцией называется медленное воздействие на колебательный процесс. Простейшим примером модуляции является периодическое изменение силы звука.

Вот как ставится этот опыт. Берут два одинаковых камертона, дающих одинаковый тон, скажем соответствующий частоте колебаний 500 периодов в секунду. Кроме этих камертонов, берут еще два: один — дающий звук с частотой 497 периодов в секунду и другой — с частотой в 503 периода в секунду.

Если ударить по камертону, дающему тон 500 периодов в секунду, и затем заглушить его рукой, можно услышать тихий звук, издаваемый вторым таким же камертоном. Это есть явление резонанса. Камертон приводится в заметное колебание тем звуком, который он способен испускать. Два других камертона, частоты которых различаются от частоты звука всего на три периода в секунду, не будут звучать и не обнаружат заметных колебаний. Это характеризует остроту, с которой камертоны отличают даже столь близкие между собой колебания.

Видоизменим опыт. Попробуем теперь заставить звучать тот же камертон, изменяя силу его звука в 3 раза в секунду. Для этого достаточно 3 раза в секунду помещать заслонку перед его резонансным ящиком. Слушатели отчетливо воспримут изменение силы доходящего до них звука. Однако, заглушив после этого камертон, можно убедиться в том, что теперь возбудились и начали звучать также те камертоны, которые в первом случае оставались в покое. Частоты их отличаются от частоты первого камертона на 3 периода в секунду.

Итак, опыт показывает, что, модулируя звук, то есть изменяя его силу, можно добиться возбуждения камертонов, частота которых отличается от частоты возбуждающего камертона как раз на частоту модуляции. Следовательно, в звуке, издаваемом модулированным камертоном, кроме его собственной частоты, появляются новые частоты, порожденные модуляцией.

Предсказание

Глубокое понимание колебательных процессов помогло Мандельштаму отыскать аналогичные явления и в такой далекой на первый взгляд от радиотехники и акустики области, как рассеяние света. Он первый понял, что в явлении рассеяния света можно обнаружить черты, родственные процессам, хорошо изученным в радиотехнике и акустике.

Этот вывод оказался очень плодотворным. В 1918 году Мандельштаму удалось использовать эту идею для дальнейшего развития теории молекулярного рассеяния света. Он рассуждал примерно так. Молекулярное рассеяние света обусловлено оптическими неоднородностями, вызываемыми местными случайными изменениями плотности, температуры и т. п. Но величина этих случайных изменений меняется во времени. Поэтому должна изменяться во времени и интенсивность (сила) рассеянного света. Это значит, что рассеянный свет испытывает модуляцию. Следовательно, если в среду попадает монохроматический свет (то есть свет, обладающий одной определенной частотой), то в рассеянном свете должны, кроме этой частоты, появиться и другие частоты, обусловленные модуляцией.

Ни один из ученых в то время не наблюдал подобного изменения частоты рассеянного света. Не имел возможности проверить выводы своей теории и сам Мандельштам — трудные условия первых лет революции, иностранной интервенции и гражданской войны препятствовали организации экспериментов, необходимых для обнаружения столь малых изменений частоты.

В 1925 году Мандельштам стал заведующим кафедрой в Московском университете. Здесь он встретился с выдающимся ученым и искусным экспериментатором Григорием Самуиловичем Ландсбергом. С тех пор обоих ученых связала не только общая работа, но и личная дружба. Они совместно продолжили штурм тайн, скрытых в слабых лучах рассеянного света.

Оптические лаборатории университета в те годы были очень бедны приборами. Молодая советская промышленность преодолевала большие трудности и поэтому не могла еще уделять достаточно внимания производству специальных оптических приборов. В университете не оказалось ни одного прибора, способного обнаружить те маленькие различия в частотах падающего и рассеянного света, которые предсказывала теория.

Однако это не остановило исследователей. Для того чтобы увеличить силу рассеянного света, они взяли в качестве источника света ртутную лампу, в которой светятся пары ртути, и решили работать не с газами, а с прозрачными твердыми телами. Ведь рассеяние тем больше, чем плотнее вещество. А в твердых телах под влиянием тепловых колебаний тоже должны возникать флуктуации плотности, сопровождающиеся рассеянием света. Но молекулярное рассеяние в твердых телах тогда никем еще не наблюдалось, и никто не знал, какое вещество следует выбрать. Начались кропотливые поиски. Наиболее подходящими оказались кристаллы кварца, среди которых можно было найти крупные, однородные и чистые образцы. Не обладая мощной аппаратурой для спектрального анализа, ученые избрали остроумный обходный путь, который должен был дать возможность воспользоваться имеющимися приборами. Для этой цели они использовали явление резонанса.

Основной трудностью в работе было то, что на слабый свет, вызванный молекулярным рассеянием, накладывался намного более сильный свет, рассеянный небольшими загрязнениями и другими дефектами тех образцов кристаллов, с которыми проводились опыты. Исследователи решили воспользоваться тем, что рассеянный свет, образованный дефектами кристалла и отражениями от различных частей установки, точно совпадает по частоте с падающим светом. Их же интересовал только свет с измененной, в соответствии с теорией Мандельштама, частотой. Таким образом, задача состояла в том, чтобы на фоне намного более яркого мешающего света выделить слабый свет измененной частоты, вызванный молекулярным рассеянием.

Идея метода привлекала своей простотой: надо поглотить свет неизмененной частоты и пропустить в спектральный аппарат только свет измененной частоты, отличающейся от первоначальной лишь на несколько тысячных долей процента. Эту идею можно реализовать на основе старого наблюдения, сделанного Кирхгофом. Он заметил, что каждый атом вещества, находящегося в газообразном состоянии, способен излучать световые волны только вполне определенных частот. Вместе с тем этот атом способен и поглощать свет только тех частот, которые он сам может излучать. Поэтому, например, при прохождении света через сосуд, наполненный парами ртути, будет сильно рассеиваться и поглощаться только такой свет, который может испускаться парами ртути, находящимися в лампе. В результате свет от ртутной лампы при прохождении через сосуд, наполненный парами ртути, будет сильно ослабляться, а свет, обладающий другими частотами, например свет от неоновой лампы, пройдет через этот сосуд без заметного ослабления. Без заметного поглощения пройдет через ртутные пары и та часть рассеянного света ртутной лампы, частота которой окажется измененной при рассеянии на случайно возникающих и рассасывающихся неоднородностях.

Мандельштам рассуждал так: свет, рассеянный в кристалле, состоит из двух частей: из слабого света измененной частоты, обусловленного молекулярным рассеянием (исследование этой части являлось целью ученых), и из гораздо более сильного света неизмененной частоты, вызванного как молекулярным рассеянием, так и главным образом посторонними причинами, а именно загрязнениями и другими дефектами кристалла (эта часть была вредной, она затрудняла исследование). Для того чтобы избавиться от мешающей части света, весь рассеянный свет следует пропускать через сосуд с парами ртути. При этом мешающий свет неизмененной частоты существенно ослабляется, а свет измененной частоты проходит без заметного ослабления. Этот свет направлялся в обычный спектроскоп для дальнейшего исследования.

Два года длились подготовительные опыты, выбирались наиболее чистые образцы кристаллов, совершенствовалась методика, устанавливались признаки, позволяющие бесспорно отличать молекулярное рассеяние от рассеяния на случайных включениях и неоднородностях кристалла.

Замечательное открытие

В 1927 году начались решающие опыты. Результаты их были необычайны. Они привели к открытию совершенно нового физического явления. В процессе исследования полученных фотографий спектра — спектрограмм наряду с спектральными линиями неизменной частоты были обнаружены слабые линии со значительно большим изменением частоты, чем это ожидалось на основании теории.

Началась тщательная проверка. Разнообразные контрольные опыты показали, что ошибок нет. В рассеянном свете действительно присутствуют слабые линии, заметно отличающиеся по частоте от падающего света.

Уже в процессе проверки стало ясно, что наблюдаемое на опыте значительное изменение частоты есть следствие процессов намного более быстрых, чем процессы рассасывания случайных неоднородностей. Ведь даже опыт с камертонами показывает, что, чем выше частота модуляции, тем больше изменение частоты звука.

Снимки, в которых выявились новые линии, были получены осенью 1927 года. Однако контрольные опыты продолжались. Советские ученые занялись всесторонней проверкой и тщательным изучением нового явления. После того как в феврале 1928 года в результате обработки многих фотографий спектров были получены точные числовые результаты и установлены закономерности в расположении новых линий, Мандельштам дал теоретическое объяснение их происхождения.

Глубокая интуиция и ясный аналитический ум сразу подсказали ему, что обнаруженные линии вызваны не теми межмолекулярными силами, которые выравнивают случайные неоднородности, а другими силами, действующими внутри молекул. Эти силы обусловливают внутримолекулярные колебания — колебания атомов, образующих каждую молекулу. Такие колебания обладают гораздо более высокой частотой, чем те колебания плотности, которые сопровождают образование и рассасывание случайных неоднородностей среды (в этих колебаниях каждая молекула участвует как одно целое). Поэтому изменение частоты света, вызванное модуляцией, имевшей причиной внутримолекулярные колебания, намного превосходит то изменение, которое предсказывала теория, учитывающая только процесс рассасывания неоднородностей.

Итак, при попытке обнаружить малое изменение частоты рассеянного света, вызванное межмолекулярными силами (это явление предсказал Мандельштам еще в 1918 году), было обнаружено значительно большее изменение частоты, вызванное внутримолекулярными силами.

Таким образом, для объяснения нового явления, которое получило название «комбинационное рассеяние света», достаточно было теорию молекулярного рассеяния, созданную Мандельштамом, дополнить данными о влиянии внутримолекулярных колебаний. Новое явление оказалось открытым в результате развития идеи Мандельштама, сформулированной им в 1918 году.

6 мая 1928 года, после серии контрольных опытов, Мандельштам и Ландсберг сообщили о своем открытии в письме в редакцию журнала «Естественные науки». К письму была приложена фотография спектра.

Кратко изложив историю поисков малых изменений длины волны света при рассеянии его в кристаллах, исследователи сообщали об открытом ими явлении, заключающемся в возникновении в спектре новых линий, далеко отстоящих от спектральных линий падающего света. Здесь же было приведено объяснение природы этого явления: в кристалле существуют колебания молекул, соответствующие линиям поглощения кварца, расположенным за красной границей видимого спектра. Эти линии были исследованы Рубенсом и Никольсом еще в 1897 году. Именно поэтому в спектре рассеянного света возникают новые линии, сдвинутые от первоначальных. Расчет сдвига частоты рассеянного света, проведенный в соответствии с этим предположением, поразительно точно совпал с результатами измерений.

В заключение авторы письма указывали, что в настоящее время они не могут сказать, связано ли открытое ими явление с явлениями, незадолго перед этим описанными Раманом и Кришнаном, ибо описание это дано в очень общем виде.

Буря

В чем же состоит явление, описанное индийскими учеными?

31 марта 1928 года в среде ученых Лондона разыгралась «буря». В этот день вышел из печати очередной номер английского журнала «Природа».

Но хотя волны этого научного циклона разбегались по свету из столицы Великобритании вместе с тоненькими книжками журнала, центр его находился в Индии. Оттуда 16 февраля ученые Ч. В. Раман и К. С. Кришнан отправили письмо с коротким описанием своего открытия.

Оптика — одна из старейших областей науки, поэтому в XX веке открыть в ней что-нибудь неведомое удавалось нечасто. Не удивительно, что, прочитав заглавие «Новый тип вторичного излучения», физики заинтересовались содержанием письма индийских ученых. В письме сообщалось о том, что попытка авторов найти оптический аналог эффекта Комптона увенчалась успехом.

Еще не улеглись страсти, вызванные в 1923 году открытиями американского физика Комптона, который, изучая прохождение рентгеновских лучей через вещество, обнаружил, что часть этих лучей, рассеиваясь в стороны от первоначального направления, увеличивает длину своей волны. Это явление можно было объяснить только законами квантовой физики, поэтому открытие Комптона явилось одним из решающих доказательств правильности молодой квантовой теории. И вот через пять лет индийские физики обнаружили нечто подобное в видимом свете.

Это был очень трудный опыт, так как ожидаемый эффект должен был быть чрезвычайно малым. Для опыта понадобился очень яркий источник света. Авторы решили использовать Солнце, собрав его лучи с помощью телескопа, имевшего объектив диаметром 18 сантиметров. Собранный свет они направили на сосуды, в которых помещались жидкости и газы, тщательно очищенные от пыли и других загрязнений.

Но обнаружить ожидаемое малое удлинение волны рассеянного света, пользуясь белым солнечным светом, содержащим практически все возможные длины волн, было безнадежно. Поэтому ученые решили воспользоваться светофильтрами. Они поставили перед объективом сине-фиолетовый фильтр, а наблюдали рассеянный свет через желто-зеленый фильтр. Эти фильтры, поставленные друг за другом, должны поглощать весь свет. Ведь желто-зеленый фильтр поглощает сине-фиолетовые лучи, пропускаемые первым фильтром.

Но в рассеянном свете Раман и Кришнан обнаружили лучи, проходящие через второй фильтр. Это мог быть оптический эффект Комптона, то есть могло быть, что при рассеянии сине-фиолетовый свет изменял свою окраску и становился желто-зеленым. Но это нужно было еще доказать. Ведь могли быть и другие причины, вызывающие появление желто-зеленого света. Например, он мог появиться в результате люминесценции, слабого свечения, которое часто возникает в жидкостях и твердых телах под действием света, тепла и других причин. Очевидно было одно: свет этот рожден вновь, он не содержался в той части солнечного света, которая прошла через первый фильтр, а затем через рассеивающее вещество.

Ученые повторили свой опыт с шестью различными жидкостями и двумя типами паров. Они пришли к выводу, что ни люминесценция, ни другие причины не играют здесь роли. Факт увеличения длины волны видимого света при рассеянии его в веществе казался им установленным.

Но светофильтры позволяют лишь обнаружить изменение длины волны. Чтобы измерить величину этого изменения, нужно применить спектроскоп — прибор, позволяющий измерять длину волны исследуемого света. И исследователи начали новую работу. Они провели измерения, применив в качестве источника света электрическую дугу, горевшую в парах ртути. Спектроскоп показал, что в рассеянном свете рядом со спектральными линиями ртути был виден свет с увеличившейся длиной волны. Особенно интересным и неожиданным было то, что область света с увеличившейся длиной волны была отделена от первоначальной спектральной линии темным промежутком. Предварительные наблюдения показали, что характер рассеянного света остается одинаковым для различных рассеивающих сред.

Эти результаты Раман направил в «Природу» 8 марта в виде письма, опубликованного 21 марта 1928 года. Только об этих двух опытах могли упоминать в своей статье, отправленной 6 мая, Мандельштам и Ландсберг. Но опыты на этом не окончились. От простого рассмотрения спектра рассеянного света Раман и Кришнан перешли к фотографированию.

Можно представить себе, с каким интересом ожидали физики всего мира новых писем из Калькутты. И вот 5 мая вместе с письмом, отправленным из Индии 22 марта под названием «Оптическая аналогия эффекта Комптона», Раман и Кришнан опубликовали замечательно четкую фотографию полученного ими спектра. «Таким образом, — пишут они, — оптическая аналогия эффекта Комптона очевидна, за исключением того, что мы имеем дело с изменением длины волны много большим, чем сдвиг, встречающийся в диапазоне рентгеновских волн». В этом же письме индийские ученые отмечали, что наблюдаемое изменение частоты рассеянного света совпадает с частотами, имеющими место в инфракрасных спектрах тех веществ, рассеяние в которых они изучали, и что этот сдвиг различен для различных веществ.

Как не вспомнить здесь о Колумбе! Он стремился найти морской путь в Индию и, увидев землю, не сомневался в том, что достиг цели. Были ли у него основания усомниться в своей уверенности при виде краснокожих жителей и незнакомой природы Нового Света?

Не так ли Раман и Кришнан, стремясь к обнаружению эффекта Комптона в видимом свете, решили, что нашли его, обнаружив свет, прошедший сквозь их светофильтры? Усомнились ли они, когда измерения показали неожиданно большое изменение длины волны? Какой вывод они сделали из обнаруженного ими совпадения величины изменения частоты при рассеянии с частотой инфракрасных спектров?

Ответ на эти вопросы содержится в следующем письме Рамана и Кришнана, датированном 15 мая и опубликованном 7 июля 1928 года в том же журнале «Природа». Да, они поняли: это не эффект Комптона. Они открыли новое явление! Новое явление, по существу предсказанное в теоретической работе, выполненной в 1925 году Крамерсом и Гейзенбергом. Изменение частоты рассеянного света обусловлено переходом энергии падающего света в энергию колебаний молекул и обратно. Эти же колебания молекул приводят к излучению и поглощению инфракрасного света. Но если и то и другое связано с одними и теми же колебаниями, не удивительно, что частоты при этом совпадают.

Наш рассказ был бы неполным, если бы мы не сказали несколько слов о выдающемся индийском ученом, которому присуждена Нобелевская премия по физике за открытие комбинационного рассеяния света. Чандрасекхар Венката Раман выполнил первые самостоятельные исследования по оптике и акустике еще в 1906 году, во время учебы в университете в Мадрасе. Начальный период его деятельности несколько напоминает первые шаги великого физика Альберта Эйнштейна.

Окончив учебу, Эйнштейн пять лет служил в патентном бюро. Именно в этот период он выполнил классические исследования по теории броуновского движения, теории световых квантов, статистической теории поглощения и излучения света и создал колоссальное здание специальной теории относительности. Раман тоже был вынужден в течение десяти лет после окончания университета, с 1907 по 1917 год, служить в департаменте финансов в Калькутте и опубликовал за это время около 30 научных работ. Лишь после этого он был приглашен на кафедру Калькуттского университета. С 1921 года Раман начал исследования молекулярного рассеяния света, которые привели его к одному из замечательных открытий XX века.

Ч. В. Раман — прирожденный физик-экспериментатор. Однако он обладал большой эрудицией в сложных вопросах теории и полностью владел математическим аппаратом, что позволяло ему глубоко проникать в сущность исследуемого явления.

Центральной и ведущей темой его научной работы являлась оптика во всех ее аспектах. Но его самой любимой областью была физика кристаллов, особенно изучение алмазов.

В 1921 году Раман приступил к систематическому исследованию рассеяния света в прозрачных средах, первым крупным его шагом было обнаружение опалесценции в образцах чистого кварца и льда. Явление заключается в том, что прозрачные в проходящем свете кристаллы при боковом освещении оказываются мутными. Поразительно, что во льду это явление было более сильным, чем в кварце, несмотря на более высокий показатель преломления последнего. Раман объяснил это большей сжимаемостью льда и указал, что рассеяние обусловлено флуктуациями плотности. Он доказал это, установив увеличение рассеяния при нагревании образца кварца.

В этих работах проявилась общность научных интересов Рамана и Мандельштама, которая привела их почти одновременно к замечательным результатам в одной области.

Впоследствии Раман возвратился к этим исследованиям и с помощью спектроскопа установил, что изменения частоты рассеянного света в чистом льде и в дистиллированной воде одинаковы. Эти изменения частоты обусловлены комбинационным рассеянием, то есть зависят от внутреннего строения молекул воды, а не от состояния, в котором она находится.

Исследуя двойное лучепреломление в кристаллах, Раман связал это явление с оптической анизотропией молекул и ионов, неоднородностью их свойств в различных направлениях. Это позволило на основании оптических характеристик кристалла сделать заключения о его структуре. Раман с успехом исследовал различные магнитооптические свойства кристаллических тел, а также магнитную анизотропию жидкостей.

После появления писем Рамана и Кришнана в майском и июльском номерах журнала «Природа» стало ясно, что одно и то же явление независимо и практически одновременно открыто и изучается в Москве и Калькутте, но московские физики изучали его в кристаллах кварца, а индийские — в жидкостях.

Замечательное открытие вызвало живой интерес среди ученых всего мира. Оказалось, что к близким результатам в конце апреля 1928 года независимо друг от друга пришли и французские ученые И. Рокар и Ж. Кабан, много занимавшиеся исследованиями рассеяния света.

Через некоторое время ученые вспомнили, что еще в 1923 году А. Смекаль на основе элементарной квантовой механики предсказал возможность появления в спектре рассеянного света новых спектральных линий, обусловленных внутримолекулярными колебаниями.

Вслед за работой Смекаля появились и другие теоретические исследования. В 1925 году Крамере и Гейзенберг провели подробное квантовое рассмотрение вопроса, а в 1926 году Шредингер и в 1927 году Дирак исследовали эту же задачу вполне современными методами.

Так физики-теоретики предсказали и подробно изучили новое явление. Вероятно, это не было известно Раману и Кришнану, Мандельштаму и Ландсбергу. Ведь в их первых статьях нет никаких указаний на связь открытого ими явления с тем, которое было уже предсказано и теоретически изучено.

После открытия комбинационного рассеяния в жидкостях Раман и Кришнам начали наблюдать это же явление в кристаллах. При этом была установлена связь строения кристалла со спектром комбинационного рассеяния, изучена температурная зависимость эффекта и получен ряд других ценных данных.

Важное значение имеет заключение Рамана о независимости нормальных колебаний решетки кристалла от состояния его поверхностей (от граничных условий) и четкое разделение «структурных колебаний» и «упругих колебаний» кристалла.

Особенно подробно Раман исследовал кристаллическую структуру алмаза — вещества, представляющего особый интерес с точки зрения физики. Раман и его сотрудники исследовали алмаз оптическими методами в видимом свете, а также с помощью инфракрасных, ультрафиолетовых и рентгеновских лучей. Изучались характеристики, общие для всех сортов алмазов, и тонкие различия между его разновидностями. Раманом и его школой было подробно исследовано и давно известное, но ранее не изученное явление люминесценции алмаза и обнаружено, что алмаз способен к двум различным типам люминесценции. На кристаллах алмаза проводились исследования термооптических, магнитооптических и других свойств кристаллических тел.

В 1947 году Ч. В. Раман был избран зарубежным членом-корреспондентом АН СССР. Ч. В. Раман был не только крупным ученым, но и выдающимся общественным деятелем. Ему была присуждена Международная Ленинская премия «За укрепление мира между народами» 1956 года. Из школы Ч. В. Рамана вышла блестящая плеяда ученых, среди которых есть и очень крупные специалисты, пользующиеся мировой известностью.

Что же такое комбинационное рассеяние света?

Подробные исследования обнаружили следующие основные черты этого явления. При прохождении пучка монохроматического (одноцветного) света через совершенно чистое, лишенное всяческих загрязнений вещество часть света рассеивается в стороны. Рассеянный свет содержит, кроме света первоначальной частоты, также свет измененных (комбинированных) частот. Разность этих частот и частоты падающего света зависит от свойств рассеивающего вещества и не зависит от частоты падающего света.

В результате на фотографии спектра рассеянного света каждая спектральная линия, излучаемая источником света, сопровождается группой линий измененной частоты — спутниками или сателлитами этой линии. Сателлиты расположены по обе стороны от основной линии, они появляются парами, расположенными симметрично на одинаковых расстояниях от основной линии. Как сказано выше, эти расстояния составляют характерную особенность рассеивающего вещества и не зависят от частоты основной линии. Число видимых сателлитов также зависит от свойств рассеивающего вещества. Характерно, что сателлиты, обладающие меньшей частотой, то есть расположенные с той стороны основной линии, которая ближе к красному участку спектра («красные» сателлиты), обычно ярче, чем те, которые расположены ближе к фиолетовому участку спектра («фиолетовые» сателлиты). Обнаружено, что разность частот основной линии и соответствующих сателлитов, которая является характеристикой рассеивающего вещества, обычно совпадает с частотами линий, наблюдаемых при изучении спектров этого же вещества в инфракрасных лучах.

Линии комбинационного рассеяния являются, таким образом, тем отпечатком, который молекулы рассеивающего вещества накладывают на спектр света источника. Именно это дало право Л. И. Мандельштаму назвать комбинационное рассеяние света языком молекул. Для тех, кто сумеет расшифровать и понять фотографии спектра комбинационного рассеяния, молекулы, пользуясь этим языком, раскроют тайны своего строения.

Для объяснения деталей этого интересного явления необходимо привлечь квантовую теорию и хотя бы бегло проследить путь, пройденный Смекалем, Гейзенбергом, Шредингером, Дираком и другими физиками-теоретиками.

Основой квантовой теории является положение о том, что энергия, в любом ее виде, может передаваться только вполне определенными порциями. В каждой системе микромира — атоме, молекуле и т. п. — существует минимальная порция энергии. Меньшая порция энергии уже не может передаваться. Квантовая теория света, созданная А. Эйнштейном, заключается в том, что обмен энергией между частицами вещества и светом происходит путем уничтожения одних и рождения других квантов света (фотонов). Количество энергии, заключающейся в каждом из них, зависит от частоты света, то есть от его цвета.

При обычном рассеянии, рассмотренном еще Релеем, когда частота света не изменяется, энергия каждого из рассеянных фотонов совпадает с энергией падающих. При комбинационном рассеянии частота рассеянного света отличается от частоты падающего. Следовательно, энергия рассеянных фотонов отличается от энергии падающих. За счет чего же возникает это различие в энергии падающих и рассеянных фотонов? Теория отвечает на этот вопрос так: атомы, образующие молекулы, совершают периодические колебания. Если свет взаимодействует с колеблющимся атомом, то энергия фотона, рассеянного при взаимодействии (для простоты и наглядности можно образно называть процесс его взаимодействия с атомом столкновением) с колеблющимся атомом, может отличаться от энергии падающего фотона. Если часть энергии падающего фотона будет затрачена на увеличение колебаний атома, то энергия рассеянного фотона окажется меньшей, чем энергия падающего. Если же часть энергии атома перейдет к свету, энергия рассеянного фотона увеличится. Теория говорит, что первый процесс происходит при обычных температурах чаще, чем второй. Поэтому при обычных температурах «красные» сателлиты, соответствующие уменьшению энергии рассеянного света по сравнению с падающим, оказываются более яркими, чем «фиолетовые» сателлиты, соответствующие увеличению энергии фотонов в результате процесса рассеяния.

По мере повышения температуры вещества рассеяние с возрастанием энергии происходит все более часто. Поэтому с ростом температуры яркость «фиолетовых» сателлитов приближается к яркости «красных» сателлитов.

Как мы уже говорили, переходы энергии могут осуществляться только вполне определенными характерными для данного вещества порциями, следовательно, разности энергий между рассеянными и падающими фотонами тоже могут быть только вполне определенными. А так как разность энергии фотонов определяет разность частот спектральных линий, то это объясняет, почему расстояния между линиями комбинационного рассеяния и основными линиями падающего света имеют вполне определенную величину, характерную для рассеивающего вещества. Можно понять механизм комбинационного рассеяния света и не прибегая к квантовой теории. Действительно, основные черты его хорошо описываются обычной электромагнитной теорией. Чтобы наглядно представить себе этот процесс, удобно сравнить его с процессами, происходящими при передаче и приеме сигналов по радио.

Мы уже говорили о том, что ртутная лампа испускает свет, состоящий из ряда линий, имеющих вполне определенную частоту. Это значит, что, пройдя через призму, свет такой лампы не образует непрерывной радужной полоски, подобной той, которую образует при прохождении через призму белый цвет (свет Солнца, вольтовой дуги, электрической лампы накаливания и т. п.). Призма преобразует свет ртутной лампы не в сплошную радужную полоску, а в ряд отдельных разноцветных линий, расположенных в порядке следования радужных цветов на различных расстояниях одна от другой. Таким образом получается спектр паров ртути.

Аналогией этому явлению в области радио может служить любой радиопередающий центр. В нем одновременно работают несколько радиопередатчиков, каждый на одной вполне определенной частоте. Если вращать ручку настройки приемника, то каждая станция будет слышна только при одном определенном положении указателя на шкале приемника. Отметив эти положения, мы получим спектр частот, излучаемых данным радиопередающим центром.

Если радиостанции включены, но на микрофон не попадает никаких звуков, то в приемнике, настроенном на любую из этих станций, тоже не будет слышно никаких звуков. В этом случае с помощью индикатора настройки мы сможем только определить, что станции включены и работают.

Если на микрофон, соединенный одновременно со всеми радиостанциями, попадают какие-либо звуки, то эти звуки будут одновременно слышны в приемниках, настроенных на любую из этих радиостанций. Обычные радиоприемники при этом будут принимать звуковую программу. В приемнике будут появляться различные по высоте тона и по силе звуки, совершенно похожие на те, которые падают на микрофон.

Если же мы сконструируем радиоприемники со слишком острым резонансом, то уже не сможем получить с их помощью обычного радиоприема. Они не смогут воспроизвести звуки, совпадающие с теми, которые воздействуют на микрофоны передатчиков. Вместо этого такие приемники с чрезмерно острым резонансом обнаружат присутствие новых «действующих радиостанций» вблизи тех мест шкалы, на которых обычные приемники принимают радиостанции нашего радиопередающего центра. Появление этих новых частот в спектре радиопередающего центра есть результат восприятия нашими весьма резонансными приемниками передачи, модулированной звуковой программой. Это аналогично комбинационному рассеянию. В результате модуляции в спектре возникли новые линии.

Из примера с модуляцией силы звука камертона можно понять, что рассмотренное различие в радиоприеме является следствием конструктивных особенностей приемников. В опыте с камертонами наше ухо воспринимало только изменения силы звука. В отличие от уха, камертоны, настроенные на соседние близкие частоты, легко обнаружили их реальное присутствие. Это объясняется тем, что камертоны обладают очень острым резонансом. Они легко различают частоты, отличающиеся между собой всего на несколько периодов. Но при этом величина колебаний ножек камертонов остается постоянной. Это значит, что камертоны не воспринимают модуляцию как изменение силы звука. Они воспринимают ее только как появление новых тонов постоянной силы, которые отсутствовали в звуке, испускаемом немодулированным источником.

Вернемся снова к примеру с радиоцентром. Количество и сила новых (так называемых боковых) частот, а также их расположение будут одинаковыми для всех передатчиков нашего радиоцентра и зависят только от характера модулирующих звуков. Если передатчики модулируются чистым звуком одной определенной частоты (например, звуком струны или свистка), то рядом с частотой каждого передатчика возникнут по две новых боковых частоты, симметрично расположенных вокруг несущей. Расстояние между боковой частотой и несущей в точности равно частоте модулирующего звука и не зависит от того, какова частота радиостанции.

При наблюдении рассеянного света дело обстоит совершенно так же. В спектре ртутной лампы можно обнаружить ряд отдельных спектральных линий. Эти линии аналогичны отдельным радиостанциям передающего центра в нашем примере. Каждой спектральной линии, как и каждой радиостанции, соответствует своя частота колебаний. При прохождении света через вещество он рассеивается в стороны, но простые спектральные аппараты не обнаруживают появления при этом новых боковых частот, вызванных колебательными движениями атомов в молекулах. Так как атомы, образующие молекулы, колеблются с гораздо меньшими частотами, чем те, которые соответствуют видимому свету, то боковые частоты очень близки к основным частотам источника света. Вместе с тем эти частоты все же настолько велики, что наш глаз не в состоянии воспринять модуляцию как периодическое изменение силы света. Глаз не успевает следить за столь быстрыми изменениями, и мы ощущаем некоторую среднюю силу света.

Но «достаточно резонансные» оптические приборы, то есть достаточно хорошие спектроскопы или специальные резонансные фильтры, как, например, сосуд с парами ртути, примененный московскими физиками, могут отделить основные линии ртутной лампы от боковых линий, появляющихся в результате комбинационного рассеяния. Сейчас мы знаем, что простые светофильтры, примененные в первой работе Рамана и Кришнана, не могли отделить линии комбинационного рассеяния от света основной линии.

Отдельные линии оптического спектра источника можно уподобить отдельным радиостанциям радиопередающего центра. Линии комбинационного рассеяния, то есть боковые линии, появляются вокруг каждой основной линии, так как все основные линии одновременно модулируются совокупным действием колебательных движений атомов, образующих молекулы рассеивающего вещества.

Итак, в 1928 году было открыто и объяснено замечательное явление комбинационного рассеяния света. Однако как же обстоит дело с теми малыми изменениями, которые искали в 1928 году и не сумели обнаружить Мандельштам и Ландсберг? Правильна ли теория 1918 года?

Окончательный ответ на этот вопрос был дан впоследствии как работами Ландсберга и Мандельштама, впервые обнаружившими такое рассеяние в 1930 году, так и главным образом прекрасными опытами советского ученого Е. Ф. Гросса. По предложению Мандельштама и Ландсберга в Государственном оптическом институте в Ленинграде им были поставлены тщательные опыты, которые привели к точному подтверждению теории Мандельштама. Гросс обнаружил это явление не только в твердых телах, но и в жидкостях, что дало в руки ученых еще одно средство для изучения сложного и интересного вопроса о строении жидкостей. Опыты Гросса вызвали дальнейшие экспериментальные и теоретические исследования. Советский физик Л. Д. Ландау совместно с чешским физиком Г. Плачеком показали, что наряду с флуктуациями плотности следует учитывать флуктуации температуры. В то время как первые рассасываются путем распространения упругих волн, вторые выравниваются вследствие теплопроводимости.

Из лаборатории в промышленность

Исследования комбинационного рассеяния света не только создали новую главу в науке, но и дали важное оружие промышленности. Достаточно сказать, что за полвека, прошедших после открытия комбинационного рассеяния, опубликовано несколько тысяч научных работ в этой области. Значительное число этих работ принадлежит советским физикам, ученикам и сотрудникам академиков Мандельштама и Ландсберга, и индийским ученым школы Рамана.

Результаты этих работ сделали комбинационное рассеяние одним из наиболее мощных способов изучения свойств вещества. Физики пользуются этим методом для изучения природы и строения жидкостей, исследования кристаллов и стекловидных веществ. Химики используют его для изучения структуры химических соединений, природы сил, приводящих к объединению атомов в молекулы. Органическая химия приобрела в комбинационном рассеянии наиболее удобный метод изучения строения сложных органических соединений.

Сотрудники лаборатории Физического института имени П. Н. Лебедева Академии наук СССР, которой руководил академик Ландсберг, разработали методы исследования вещества, использующие явление комбинационного рассеяния света. Они позволяют в условиях заводской лаборатории быстро и точно производить количественные и качественные анализы авиационных бензинов, других продуктов переработки нефти и синтетических органических жидкостей.

Для того чтобы стали понятны огромные трудности, которые пришлось преодолеть советским ученым при изучении комбинационного рассеяния света, достаточно привести следующие цифры. Из общего количества световой энергии, поступающей в изучаемое вещество, в спектральный аппарат попадает примерно одна десятимиллиардная часть. Но на долю линий комбинационного рассеяния редко приходится 2–3 % этой величины. Обычно эти линии еще более слабы, поэтому явление комбинационного рассеяния так долго оставалось незамеченным. Понадобилось огромное экспериментальное искусство, чтобы обнаружить это явление, и глубокое понимание физической природы взаимодействия между светом и веществом для того, чтобы его понять и не приписать появление неизвестных линий случайной ошибке.

При получении первых фотографий комбинационного рассеяния требовалась экспозиция в десятки часов. Аппаратура, созданная советскими учеными, позволяет теперь получить спектр чистых веществ в течение нескольких минут, а иногда и секунд. Даже для анализа сложных смесей, в которые отдельные вещества входят в количестве всего нескольких процентов, обычно достаточны экспозиции, не превышающие одного часа.

Итак, открытие и исследование комбинационного рассеяния света позволило ученым «бросить взгляд внутрь молекулы». Обычно спектральные линии, испускаемые газами при пропускании электрических искр или под влиянием высокой температуры, говорят о строении электронных оболочек атомов этих газов. Линии комбинационного рассеяния говорят о строении молекул, о силах, связывающих отдельные атомы в молекулы, об относительных движениях атомов, образующих молекулу. При расшифровке линий комбинационного рассеяния физики учились понимать своеобразный световой язык, которым молекулы рассказывают нам о своих тайнах.

Впервые этот язык, записанный на фотопластинках, проявленных в оптической лаборатории, был открыт, расшифрован и понят Мандельштамом и Ландсбергом, Раманом и Кришнаном. Они научили своих учеников разбирать этот язык. В течение полувека во всем мире ведется упорная работа по составлению словаря языка молекул, словаря, который оптики называют каталогом спектральных линий комбинационного рассеяния. Когда такой каталог будет составлен, процесс расшифровки спектрограмм значительно облегчится и не будет требовать той большой и трудоемкой работы, которая проводится сейчас при исследовании сложных веществ.

Новая жизнь

Крупное открытие, сделанное в одной из областей науки, неизбежно проявляется и в других областях, иногда кажущихся очень отдаленными. Обычно открытие оказывает воздействие и на технику, а через нее и на повседневную жизнь человечества. К таким крупным научным событиям принадлежит создание лазеров. Квантовая электроника родилась вместе с изобретением молекулярного генератора радиоволн, но ее расцвет начался после создания лазеров и освоения ею оптического диапазона. До появления лазеров наблюдение комбинационного рассеяния света требовало многочасовых экспозиций, что затрудняло применение этого метода в промышленности (впрочем, несмотря на трудности, этот метод и ранее применяли для контроля на некоторых химических предприятиях). Огромная, яркость излучения лазеров кардинально изменила ситуацию. Применение фотографической регистрации стало необязательным. Спектры комбинационного рассеяния теперь можно наблюдать непосредственно глазами. Более того, их удобно фиксировать фотоприемниками и включать эти фотоприемники в системы автоматического управления технологическими процессами. Хорошо разработанные методы наблюдения комбинационного рассеяния открыли один из путей применения лазеров в промышленности.

Создание лазеров привело к рождению новой области науки — нелинейной оптики, имеющей непосредственное отношение к проблеме рассеяния света. Нелинейная оптика пережила долгий период утробного развития. Еще в 1923 году С. И. Вавилов и В. Л. Левшин обнаружили уменьшение доли поглощенного света при увеличении интенсивности падающего света. До того никто не сомневался в независимости всех оптических явлений от интенсивности света. Но С. И. Вавилов сделал из своего частного наблюдения далеко идущие выводы. Он понял, что оптические явления не зависят от интенсивности света только тогда, когда эта интенсивность мала. Он знал, что такая ситуация встречается и в других областях науки, например в такой древней, как механика.

Даже открытое Галилеем постоянство периода колебаний маятника справедливо, только если размахи маятника малы. Стоит отклонить или толкнуть маятник сильнее, период его колебаний изменится. Это лишь простой пример. Аналогичные ситуации встречаются повсеместно.

Во всех случаях, когда главные особенности явлений не зависят от масштаба характеризующих их величин, исследования приводят к простейшим математическим уравнениям. Математики называют такие уравнения линейными потому, что одно из них описывает свойства прямой линии.

Когда закономерности какого-либо явления зависят от интенсивности (от величины) соответствующих процессов, для их изучения требуется применение более сложных — нелинейных уравнений. Поэтому, поняв, что при увеличении интенсивности света должны наблюдаться новые неведомые явления, зависящие от интенсивности света, Вавилов ввел новый термин. Он назвал нелинейной оптикой новый раздел оптики, открывшей ему свое присутствие слабой зависимостью величины поглощения света стеклом, содержащим соединения урана.

Следующий шаг в неведомую область сделал лишь через 30 лет Г. С. Горелик. Он теоретически доказал, что хорошие фотоэлектрические приемники света обладают достаточной чувствительностью, чтобы зарегистрировать нелинейные зависимости в целом ряде оптических явлений. Одно из таких явлений обнаружили в 1955 году американские исследователи.

Первые лазеры заработали в 1960 году. О лазерах мы поговорим позже. Сейчас большинство людей знает, что лазеры — новые источники света, испускающие свет несравненно более яркий, чем все другие известные источники света. Уже в 1961 году П. Франкен зафиксировал первый нелинейный лазерный эффект — удвоение частоты света, проходящего через прозрачный кристалл, а еще через год Е, Вудберн и В. Нг обнаружили вынужденное комбинационное рассеяние света.

Еще одна сказка

Каждый помнит восточного мудреца, попросившего о скромном вознаграждении. Он хотел, чтобы на первую клетку шахматной доски ему положили всего одно зернышко, а на вторую только два, на третью лишь четыре, и так, не запрашивая большего, он просил, чтобы на каждую следующую клетку ему клали всего вдвое больше зерен, чем на предыдущую. И каждый помнит, к чему это должно было привести. Скромное удвоение приводит к фантастически быстрому росту. Уже на восьмой клетке придется размещать 128 зерен…

Ученики и последователи Мандельштама и Ландсберга сумели извлечь пользу из ничтожных количеств света, преобразующегося в спектральные линии комбинационного рассеяния. Уже первые лазеры превратили наблюдение комбинационного рассеяния из изощренного эксперимента рутинную операцию. Но доля световой энергии, преобразующейся в излучение комбинационных частот, оставалась ничтожной. Однако ничтожная часть очень большой величины может оказаться достаточно крупной. Миллионная доля от миллиона тонн — это целая тонна!

Бурный рост лазеров привел физиков в область нелинейной оптики, путь в которую был указан Вавиловым. То, с чем им пришлось встретиться, ошеломляло не меньше, чем увеличение количества зерен в древней сказке.

Весь прежний опыт говорил о том, что по мере погружения луча света в рассеивающую среду интенсивность рассеянного света быстро уменьшается, даже если среда прозрачна и не поглощает свет. Никого это не удивляло. Ведь при рассеянии интенсивность первоначального света уменьшается за счет того, что часть энергии света рассеивается в стороны; уменьшается очень быстро, быстрее, чем увеличиваются кучки зерен на шахматной доске.

Но с лазерным лучом все выглядит сложнее. Конечно, и лазерный луч ослабевает по мере погружения в рассеивающую среду. Более того, его интенсивность убывает быстрее, чем убывала интенсивность в опытах с обычными источниками света. Удивительным оказалось, что интенсивность рассеянного света на начальном участке, там, где лазерный луч входит в рассеивающую среду, не убывает, а быстро возрастает. Такое может быть, только если доля рассеянного света не остается постоянной, а возрастает по мере продвижения лазерного излучения в среду.

Приходится признать, что процесс рассеяния отсасывает энергию из лазерного пучка сильнее, чем из пучка света обычного источника, причем по законам, неведомым оптикам. Это законы нелинейной оптики.

Теперь, когда они изучены, они выглядят необыкновенно ясными. Впрочем, и в то время их удавалось уяснить сравнительно легко при помощи общей теории нелинейных процессов, которая к тому времени уже была хорошо разработана усилиями Мандельштама и Н. Д. Папалекси, Ю. Б. Кобзарева, Н. Н. Боголюбова и их учеников.

К школе Мандельштама и Папалекси принадлежал Рем Викторович Хохлов (молодой ректор МГУ, трагически погибший в альпинистском походе в 70-х годах). Он внес решающий вклад в становление нелинейной оптики, раздела оптики, имеющего дело с оптическими явлениями при высокой интенсивности оптического излучения.

Механизм нелинейного комбинационного рассеяния лишь немногим сложнее обычного. При обычном комбинационном рассеянии часть падающего света рассеивается в стороны атомами вещества и изменяет при этом частоту в соответствии с частотами колебаний атомов в молекулах рассеивающего вещества. Интенсивность света, рассеиваемого в процессе обычного комбинационного рассеяния, пропорциональна интенсивности падающего света и увеличивается вместе с интенсивностью колебаний молекул. При обычном комбинационном рассеянии колебания молекул остаются практически неизменными при их взаимодействии со светом.

Но при воздействии на вещество мощного излучения лазера ситуация изменяется. Этого нельзя было предвидеть исходя из многовекового опыта обычной линейной оптики. Конечно, явления, известные ранее, не исчезли. Лазерное излучение, взаимодействуя с атомами, точнее, с электронами атомов, входящих в молекулы вещества, рассеивается в стороны. При этом в рассеянном излучении содержатся не только частоты первоначального лазерного излучения, но и комбинационные частоты. Словом, при применении лазерного источника сохраняются все особенности рассеянного света, изученные Мандельштамом и Ландсбергом, Раманом и Кришнаном.

Новой является только большая интенсивность рассеянного света. Но в этом нет ничего неожиданного, это предвидел Вавилов, изучением этого занимался Хохлов. Ведь интенсивность излучения лазера очень велика, а интенсивность рассеянного излучения пропорциональна интенсивности падающего излучения. Коэффициентом пропорциональности при этом служит интенсивность внутримолекулярных колебаний. Неожиданным является то, что излучение, возникшее в процессе рассеяния, если оно достаточно интенсивно, способно в свою очередь увеличивать внутримолекулярные колебания. Сказанное нуждается в уточнении: рассеянное излучение может влиять на колебания молекул, только если оно действует совместно с породившим его излучением лазера. Это значит, что рассеянное излучение влияет только на колебания тех молекул, которые располагаются в пределах пучка лазерного излучения.

При этом излучение лазера, рассеянное атомами, входящими в молекулы, действуя на эти же атомы совместно с первоначальным лазерным излучением, раскачивает их.

Здесь начинается самое интересное: переход от линейной оптики к нелинейной. Линейная оптика говорит, что интенсивность колебаний атомов в молекулах вещества служит постоянным множителем пропорциональности между падающим и рассеянным излучением. Нелинейная оптика замечает: это справедливо только при малых мощностях. При больших мощностях постоянный множитель пропорциональности превращается в переменную величину, зависящую от мощности падающего и рассеянного излучения. Причем этот ранее постоянный множитель растет вместе с мощностью излучения. Так замыкается цепочка. Увеличение мощности рассеянного излучения приводит к дальнейшему увеличению рассеяния. Именно эта особенность отражена в названии «вынужденное рассеяние». Рассеяние мощного лазерного излучения, воздействуя на вещество, создает условия для возникновения все более мощного рассеяния. Пропорциональность, то есть простая линейная зависимость мощности рассеиваемого излучения от мощности падающего излучения, заменяется более сложной нелинейной зависимостью.

Самовоздействие

При взгляде со стороны на луч достаточно мощного лазера, проникающий в прозрачное вещество, видно, что яркость рассеянного излучения возрастает по мере его углубления в вещество. Конечно, такое возрастание не безгранично. Ведь энергия лазерного излучения постепенно расходуется, порождая рассеянное излучение. Поэтому процесс постепенно становится все менее и менее эффективным. Физики говорят — процесс идет с насыщением. Возрастание интенсивности рассеиваемого излучения постепенно замедляется, а затем уступает место ослаблению, по мере того как все более расходуется энергия излучения, исходящего из лазера.

Основываясь на нелинейной оптике, физики использовали вынужденные рассеяния для создания новых оптических приборов, открывших удивительные возможности.

Один из таких приборов назван ВКР-лазером, т. лазером на вынужденном комбинационном рассеянии. Для создания такого лазера оказалось достаточным поместить прозрачную жидкость, газ или твердое тело внутрь оптического резонатора и облучить его достаточно мощным лазером. Резонатор должен быть настроен на частоту одной из компонент комбинационного рассеяния, определяемой разностью частоты, излучаемой лазером, и одной из частот колебаний молекул выбранного прозрачного вещества. Рассеянное излучение, многократно отражаясь от зеркал резонатора, каждый раз способствует увеличению интенсивности рассеяния именно этого же излучения. В результате мощность рассеянного таким образом излучения лавинообразно возрастает, как возрастает мощность излучения обычного лазера, когда в нем начинается процесс генерации излучения. Возникающее вынужденное комбинационное излучение обладает всеми характерными признаками лазерного излучения, его узкой направленностью, его высокой когерентностью, то есть способностью к образованию четких интерференционных полос. Таким образом ВКР-лазеры способны создавать излучение, не отличающееся от излучения обычных лазеров, причем создавать его и на тех частотах, для которых не существует обычных лазеров.

Самовоздействие рассеянного излучения возникает не только в процессе комбинационного рассеяния, но и при рассеянии других типов, например при рассеянии, предсказанном Мандельштамом в 1918 году, а затем независимо изученном Л. Бриллюэном. Это вынужденное рассеяние возникает только при больших лазерных мощностях падающего излучения и не может быть получено при помощи нелазерных источников. Его называют вынужденным излучением Мандельштама — Бриллюэна.

Как и обычное рассеяние Мандельштама — Бриллюэна, оно вызвано хаотическими (тепловыми) процессами в прозрачных веществах. Здесь имеются в виду хаотические движения, в которых каждая молекула участвует как целое. Конечно, и в этом случае свет взаимодействует непосредственно с электронами, входящими в атомы, а атомы (или ионы) входят в состав молекул и колеблются относительно центров масс соответствующих молекул. Эти колебания, как известно, проявляются в процессах Комбинационного рассеяния (свободного и вынужденного).

В рассеянии Мандельштама — Бриллюэна существенны те движения, в которых молекула участвует как единое целое, это движения ее центра масс. Они проявляются в форме местных изменений плотности при случайных возникновениях небольших сжатий и разрежений. Такие сжатия и разрежения могут быть следствием звуковых, сверхзвуковых или даже гиперзвуковых волн, движущихся внутри вещества. Если даже не возбуждать каким-либо регулярным образом звуковые (гиперзвуковые) волны, то тем не менее в веществе постоянно возникают и исчезают случайные флуктуационные волны, проявляющие свое присутствие только в форме местных изменений плотности вещества.

Наряду с такими флуктуациями плотности внутри вещества всегда существуют флуктуации температуры, флуктуации теплоемкости и других величин, средние значения которых характеризуют внутреннее состояние вещества.

Рассеяние, возникающее при больших мощностях лазерного излучения, повышает интенсивность хаотических процессов в веществе, интенсивность флуктуации всех этих величин, что в свою очередь увеличивает рассеяние излучения. При этом тоже возникает самовоздействие, в результате чего любое увеличение рассеяния приводит к его дальнейшему возрастанию.

Отличается ли вынужденное рассеяние Мандельштама — Бриллюэна от вынужденного комбинационного рассеяния?

Да, отличается. Попробуем найти физическую причину наблюдаемого различия. Величина молекул много меньше длины световой волны. Поэтому на расстояниях, соизмеримых с длиной волны, излучение взаимодействует со множеством атомов, входящих в молекулы, находящиеся в различных состояниях внутренних колебаний. В отличие от этого, масштабы тепловых флуктуации, в которых молекулы участвуют как целое, много больше размеров молекул, а их возникновение и рассасывание происходит более медленно. При этом внутримолекулярные колебания не проявляют свои особенности, а возникающие более плавные неоднородности лишь незначительно влияют на длину волны рассеянного излучения. При лазерных мощностях и обратное влияние — самовоздействие — имеет соответственно плавную пространственную структуру. Такое самовоздействие возникает вследствие совместного влияния на вещество двух световых полей, обладающих малым различием длин волн.

Легко представить, что происходит, если рассеяние такого типа претерпевает плоская световая волна, то есть волна, гребни и впадины которой образуют в пространстве систему параллельных поверхностей. При этом рассеиваемые волны тоже имеют структуру множества параллельных плоскостей. Но так как скорости распространения рассеянных волн вследствие различия длин этих волн различны, то первичные волны обгоняют рассеянные волны или отстают от них. В результате сложения с рассеянными волнами первичные волны частично отражаются и поворачивают обратно к возбудившему их источнику. Рассеяние такого типа называют обратным рассеянием. По мере увеличения мощности падающего лазерного излучения вынужденное рассеяние назад становится преобладающим. Волны, возбуждаемые лазером, проникают в вещество лишь на небольшую глубину, а затем поворачивают обратно и выходят из вещества так, как если бы они встретили на пути зеркало.

Навстречу времени

Практическое применение этого явления открывает поистине потрясающие возможности. Наиболее четко они могут быть выражены фразой: вынужденное рассеяние назад позволяет обратить для световой волны направление течения времени. Фразой, кажущейся безумной каждому, знающему, что время неотвратимо течет только в одном направлении: от прошлого к будущему.

Один из первооткрывателей нового явления Б. Я. Зельдович, сын академика Я. Б. Зельдовича, с которым мы еще встретимся неоднократно, и его сотрудники приводят в качестве примера такую картину. На вышке для прыжков в воду стоит девушка. Прыжок, и она касается руками гладкой поверхности воды. На поверхности воды возникают кольцевые волны, разбегающиеся в стороны, небольшое количество брызг взлетает вверх и падает вслед за тем, как тело девушки уходит под воду; волны постепенно успокаиваются, а девушка выплывает где-то вдали, чтобы не отвлекать нашего внимания. Кинооператор фиксирует все это на пленку.

Проявив пленку, оператор может воспроизвести описанную картину на экране. Если он захочет посмотреть ее еще раз, ему необходимо перемотать пленку в обратном направлении. Перематывая ее при помощи кинопроекционного аппарата, он увидит, как на гладкой поверхности воды возникают кольцевые волны, сбегающие к центру. Вдруг из центра возникают ноги девушки. Капли, поднимающиеся со всех сторон, слетаются к центру. Тело девушки постепенно поднимается над водой. Когда она снова окажется в воздухе, поверхность воды станет зеркально гладкой — все волны и капли исчезнут там, где девушка последний раз соприкасалась с водой. Затем девушка взмоет на вышку и улыбнется точно так же, как она улыбалась перед прыжком.

Такое возможно только в кино. В реальном мире время неуклонно течет от прошлого к будущему. Обратить течение времени невозможно.

Но в некоторых физических опытах можно наблюдать явления, которые в существенной мере приближаются к тому, что было при «обращении времени» при помощи кинофильма.

Простейший пример — хороший мяч, падающий на твердый пол. Еще лучше — стальной шарик, падающий на стальную плиту. Глядя на подскакивающий шарик, мы видим то же самое, что увидели бы, обратив вспять кинопленку, зафиксировавшую его падение. Конечно, шарик не достигнет исходной высоты. Причина ясна: трение о воздух, затрата энергии на возбуждение звуковых волн внутри шарика и плиты, а также в воздухе. Но Галилей научил нас, обдумывая опыты, отделять главное от второстепенного. Второстепенное здесь — потеря энергии. Главное — обратимость механических движений, выражающаяся в том, что время входит в уравнения механики обратимо. Изучая механику, можно изменять знак, стоящий в уравнениях перед временем.

Рассматривая процесс в целом, необходимо определить, когда отброшенные «мелочи» станут существенными, а математическая модель (уравнения) должна быть уточнена. Уточнение покажет, когда обращение времени становится не соответствующим реальности. Ответ прост. Нельзя аналогично толковать опыт с шариком в тех случаях, когда потери механической энергии слишком велики и каждый последующий подскок шарика много меньше предыдущего. В этом случае требуется учет трения, приводящего к выделению тепла, а значит, для описания опыта потребуется привлечение термодинамики.

Совершенно так же обстоит дело в оптике. Оказывается, что в оптике существуют явления, развивающиеся так, будто в течение коротких интервалов времени направление событий во времени может быть изменено на обратное.

Симметрия уравнений оптики (так же, как уравнений механики) такова, что обращение времени может быть заменено обращением направлений, то есть заменой реальных движении движениями, направленными противоположно.

В оптике для этого следует заменить направление распространения световых волн (вперед и назад, от центра к центру). Такую замену называют обращением волнового фронта, а если такое обращение возникает как следствие самовоздействия, например при вынужденном рассеянии, его называют самообращением волнового фронта. Теперь эффект самообращения может быть получен при различных вынужденных рассеяниях. Установлено, что эффект самообращения очень близок к тому, что происходит при голографии и в некоторых других случаях.

При вынужденном рассеянии Мандельштама — Бриллюэна удается добиться практически полного обращения волнового фронта. Вот несколько примеров того, что может быть при этом достигнуто.

Известно, что получение в твердотельных лазерах столь узких пучков излучения, как в лучших газовых лазерах, связано с огромными трудностями и большими затратами. Причина в сложности изготовления достаточно однородных лазерных кристаллов. Существенно, что количество и степень неоднородности возрастают при увеличении размеров кристалла. Поэтому попытки использовать большой лазерный усилитель для усиления излучения, получаемого от хорошего маломощного лазера, не приводят к успеху — неоднородности усилителя портят качество усиливаемого излучения. Попытки применить еще один усилитель или вторично применить первый лазерный усилитель приведут лишь к дополнительному ухудшению качества излучения.

Но если излучение, искаженное лазерным усилителем, подвергнуть обращению волнового фронта, оно вторично пройдет тот же лазерный усилитель в обратном направлении, причем все искажения, возникшие при первом проходе окажутся скомпенсированы при обратном проходе. С ним произойдет то же, что с девушкой на кинопленке. Двукратное прохождение в прямом и обратном направлении приведет все в исходное состояние. В случае с лазерным усилителем обращение волнового фронта и двукратное прохождение через усилитель приведет к увеличению интенсивности излучения без внесения в него искажений. Так, в рубиновом лазере плохого качества удалось полностью сохранить однородность усиливаемого излучения при увеличении его интенсивности в 400 раз. Это достигается потому, что каждый из участков световой волны, прошедший определенный путь внутри лазера-усилителя, проходит в обратном направлении в точности тот же путь. При этом все искажения, приобретаемые по пути вперед, выправляются во время пути обратно. Волна, прошедшая усилитель дважды в противоположных направлениях, отличается от волны, входящей в усилитель, только тем, что она усилена и идет в противоположном направлении.

При этом существенно, что скорость света так велика, что за время его двойного прохождения состояние усилителя практически неизменно. (Вспомним, что обращение времени может быть заменено обращением направлений, только если в условиях опыта не происходят изменения оптических свойств среды.)

Вслед за Н. Г. Басовым и его сотрудниками лазерные усилители с обращением волнового фронта на вынужденном рассеянии успешно применяют для лазерного нагрева малых мишеней при термоядерных и других исследованиях. Аналогичным способом возможно самонаведение излучения лазеров через неоднородные среды, например через атмосферу, или при применении дешевых оптических деталей сравнительно низкого качества. Этой возможностью предполагают воспользоваться создатели наземного лазерного оружия, предназначенного для поражения целей в космосе в ходе звездных войн.

Нелинейная оптика, ведущая свою родословную от Вавилова, нашла пути преобразования длины волны (цвета) лазерного излучения. Стало возможным создавать приборы, порождающие из невидимого инфракрасного излучения яркий зеленый свет или любой другой из цветов, входящих в спектр излучения Солнца и даже в невидимое ультрафиолетовое и в мягкое рентгеновское излучение.

Нелинейная оптика позволила разработать сверхчувствительные приемники света, аналогичные лучшим радиоприемникам, и реализовать стабильность частоты источников света, превосходящую стабильность лучших атомных часов.

Однако это выходит за пределы, очерченные рамками главы, охватывающей лишь то, что связано с рассеянием света. Об этом будет рассказано в другом месте.

ГЛАВА 3