Данное мной описание правильно, хотя и исчерпывает всю сложность процесса поиска имен в C++. Наша цель, однако, не в том, чтобы узнать о поиске имен столько, чтобы самостоятельно написать компилятор. Достаточно будет, если мы сумеем избежать неприятных сюрпризов, а для этого изложенной информации должно хватить.
Снова вернемся к предыдущему примеру, но на этот раз перегрузим функции mf1 и mf3, а также добавим версию mf3 в класс Derived. Как объясняется в правиле 36, перегрузка mf3 в производном классе Derived (когда наследуется невиртуальная функция) сама по себе подозрительна, но чтобы лучше разобраться с видимостью имен, закроем на это глаза.
class Base {
private:
int x;
public:
virtual void mf1() = 0;
virtual void mf1(int);
virtual void mf2();
void mf3();
void mf3(double);
...
};
class Derived: public Base {
public:
virtual void mf1()
void mf3();
void mf4();
...
};
Этот код приводит к поведению, которое удивит любого программиста C++, впервые столкнувшегося с ним. Основанное на областях видимости правило сокрытия имен никуда не делось, поэтому все функции с именами mf1 и mf3 в базовом классе окажутся скрыты одноименными функциями в производном классе. С точки зрения поиска имен, Base::mf1 и Base::mf3 более не наследуются классом Derived!
Derived d;
int x;
...
d.mf1(); // правильно, вызывается Derived::mf1
d.mf1(x); // ошибка! Derived::mf1 скрывает Base::mf1
d.mf2(); // правильно, вызывается Base::mf2
d.mf3(); // правильно, вызывается Derived::mf3
d.mf3(x); // ошибка! Derived::mf3 скрывает Base::mf3
Как видите, это касается даже тех случаев, когда функции в базовом и производном классах принимают параметры разных типов, независимо от того, идет ли речь о виртуальных или невиртуальных функциях. И точно так же, как в нашем первом примере double x внутри функции someFunc скрывает int x из глобального контекста, так и здесь функция mf3 в классе Derived скрывает функцию mf3 из класса Base, которая имеет другой тип.
Обоснование такого поведения в том, что оно не дает нечаянно унаследовать перегруженные функции из базового класса, расположенного много выше в иерархии наследования, упрятанной в библиотеке или каркасе приложения. К сожалению, обычно вы хотите унаследовать перегруженные функции. Фактически если вы используете открытое наследование и не наследуете перегруженные функций, то нарушаете семантику отношения «является» между базовым и производным классами, которое в правиле 32 провозглашено фундаментальным принципом открытого наследования. То есть это тот случай, когда вы почти всегда хотите обойти принятое в C++ по умолчанию правило сокрытия имен.
Это можно сделать с помощью using-объявлений:
class Base {
private:
int x;
public:
virtual void mf1() = 0;
virtual void mf1(int);
virtual void mf2();
void mf3();
void mf3(double);
...
};
class Derived: public Base {
public:
using Base::mf1; // обеспечить видимость всех (открытых) имен
using Base::mf3; // mf1 и mf3 из класса Base в классе Derived
virtual void mf1()
void mf3();
void mf4();
...
};
Теперь наследование будет работать, как и ожидается.
Derived d;
int x;
...
d.mf1(); // по-прежнему правильно, вызывается Derived::mf1
d.mf1(x); // теперь правильно, вызывается Base::mf1
d.mf2(); // по-прежнему правильно, вызывается Base::mf2
d.mf3(); // по-прежнему правильно, вызывается Derived::mf3
d.mf3(x); // теперь правильно, вызывается Base::mf3
Это означает, что если вы наследуете базовому классу с перегруженными функциями и хотите переопределить только некоторые из них, то должны включить using-объявление для каждого имени, иначе оно будет скрыто.
Можно представить себе ситуацию, когда вы не хотите наследовать все функции из базовых классов. При открытом наследовании такое никогда не должно происходить, так как это противоречит смыслу отношения «является» между базовым классом и производным от него. Вот почему using-объявление находится в секции public объявления производного класса; имена, которые открыты в базовом классе, должны оставаться открытыми и в открыто унаследованном от него. Но при закрытом наследовании (см. правило 39) такое желание иногда осмыслено. Например, предположим, что класс Derived закрыто наследует классу Base, и единственная версия mfl, которую Derived хочет унаследовать, – это та, что не принимает параметров. Using-объявление в этом случае не поможет, поскольку оно делает видимыми в производном классе все унаследованные функции с заданным именем. Здесь требуется другая техника – простая перенаправляющая функция:
class Base {
public:
virtual void mf1() = 0;
virtual void mf1(int);
... // как раньше
};
class Derived: private Base {
public:
virtual void mf1() // перенаправляющая функция
{ Base::mf1();} // неявно встроена (см. правило 30)
...
};
...
Derived d;
Int x;
d.mf1(); // правильно, вызывается Derived::mf1
d.mf1(x); // ошибка! Base::mf1 скрыта
Другое применение встроенных перенаправляющих функций – обойти дефект в тех устаревших компиляторах, которые не поддерживают using-объявления для импорта унаследованных имен в область видимости производного класса.
Это все, что можно сказать о наследовании и сокрытии имен. Впрочем, когда наследование сочетается с шаблонами, возникает совсем другой вариант проблемы «сокрытия унаследованных имен». Все подробности, касающиеся шаблонов, см. в правиле 43.
Что следует помнить• Имена в производных классах скрывают имена из базовых классов. При открытом наследовании это всегда нежелательно.
• Чтобы сделать скрытые имена видимыми, используйте using-объявления либо перенаправляющие функции.
Правило 34: Различайте наследование интерфейса и наследование реализации
Внешне простая идея открытого наследования при ближайшем рассмотрении оказывается состоящей из двух различных частей: наследования интерфейса функций и наследования их реализации. Различие между этими двумя видами наследования соответствует различию между объявлениями и определениями функций, обсуждавшемуся во введении к этой книге.
При разработке классов иногда требуется, чтобы производные классы наследовали только интерфейс (объявления) функций-членов. В других случаях необходимо, чтобы производные классы наследовали и интерфейс, и реализацию функций, но могли переопределять унаследованную реализацию. А иногда вам может понадобиться использование наследования интерфейса и реализации, но без возможности что-либо переопределять.
Чтобы лучше почувствовать различия между этими вариантами, рассмотрим иерархию классов для представления геометрических фигур в графическом приложении:
class Shape {
public:
virtual void draw() const = 0;
virtual void error(const std::string& msg);
int objectID() const;
...
};
class Rectangle: public Shape {…};
class Ellipse: public Shape {…};
Shape – это абстрактный класс; таковым его делает чисто виртуальная функция draw. В результате пользователи не могут создавать объекты класса Shape, а лишь классов, производных от него. Несмотря на это, Shape оказывает сильное влияние на все открыто наследующие ему классы по следующей причине: