Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ — страница 7 из 74

• Для простых констант директиве #define следует предпочесть константные объекты и перечисления (enum).

• Вместо имитирующих функции макросов, определенных через #define, лучше применять встроенные функции.

Правило 3: Везде, где только можно используйте const

Замечательное свойство модификатора const состоит в том, что он накладывает определенное семантическое ограничение: данный объект не должен модифицироваться, – и компилятор будет проводить это ограничение в жизнь. const позволяет указать компилятору и программистам, что определенная величина должна оставаться неизменной. Во всех подобных случаях вы должны обозначить это явным образом, призывая себе на помощь компилятор и гарантируя тем самым, что ограничение не будет нарушено.

Ключевое слово const удивительно многосторонне. Вне классов вы можете использовать его для определения констант в глобальной области или в пространстве имен (см. правило 2), а также для статических объектов (внутри файла, функции или блока). Внутри классов допустимо применять его как для статических, так и для нестатических данных-членов. Для указателей можно специфицировать, должен ли быть константным сам указатель, данные, на которые он указывает, либо и то, и другое (или ни то, ни другое):


char greeting[] = “Hello”;

char *p = greeting; // неконстантный указатель,

// неконстантные данные

const char *p = greeting; // неконстантный указатель,

// константные данные

char * const p = greeting; // константный указатель,

// неконстантные данные

const char * const p = greeting; // константный указатель,

// константные данные


Этот синтаксис не так страшен, как может показаться. Если слово const появляется слева от звездочки, константным является то, на что указывает указатель; если справа, то сам указатель является константным. Наконец, если же слово const появляется с обеих сторон, то константно и то, и другое.

Когда то, на что указывается, – константа, некоторые программисты ставят const перед идентификатором типа. Другие – после идентификатора типа, но перед звездочкой. Семантической разницы здесь нет, поэтому следующие функции принимают параметр одного и того же типа:


void f1(const Widget *pw); // f1 принимает указатель на

// константный объект Widget

void f1(Widget const *pw); // то же самое делает f2


Поскольку в реальном коде встречаются обе формы, следует привыкать и к той, и к другой.

Итераторы STL смоделированы на основе указателей, поэтому iterator ведет себя почти как указатель T*. Объявление const-итератора подобно объявлению const-указателя (то есть записи T* const): итератор не может начать указывать на что-то другое, но то, на что он указывает, может быть модифицировано. Если вы хотите иметь итератор, который указывал бы на нечто, что запрещено модифицировать (то есть STL-аналог указателя const T*), то вам понадобится константный итератор:


std::vector vec;

...

const std::vector::iterator iter = // iter работает как T* const

vec.begin();

*iter = 10; // Ok, изменяется то, на что

// указывает iter

++iter; // ошибка! iter константный

std::vector::const_iterator citer = // citer работает как const T*

vec.begin();

*citer = 10; // ошибка! *citer константный

++citer; // нормально, citer изменяется


Некоторые из наиболее интересных применений const связаны с объявлениями функций. В этом случае const может относиться к возвращаемому функцией значению, к отдельным параметрам, а для функций-членов – еще и к функции в целом.

Если указать в объявлении функции, что она возвращает константное значение, то можно уменьшить количество ошибок в клиентских программах, не снижая уровня безопасности и эффективности. Например, рассмотрим объявление функции operator* для рациональных чисел, введенное в правиле 24:


class Rational {…}

const Rational operator*(const Rational& lhs, const Rational& rhs);


Многие программисты удивятся, впервые увидев такое объявление. Почему результат функции operator* должен быть константным объектом? Потому что в противном случае пользователь получил бы возможность делать вещи, которые иначе как надругательством над здравым смыслом не назовешь:


Rational a, b, c;

(a*b)=c; // присваивание произведению a*b!


Я не знаю, с какой стати программисту пришло бы в голову присваивать значение произведению двух чисел, но могу точно сказать, что иногда такое может случиться по недосмотру. Достаточно простой опечатки (при условии, что тип может быть преобразован к bool):


if (a*b = c)... // имелось в виду сравнение!


Такой код был бы совершенно некорректным, если бы a и b имели встроенный тип. Одним из критериев качества пользовательских типов является совместимость со встроенными (см. также правило 18), а возможность присваивания значения результату произведения двух объектов представляется мне весьма далекой от совместимости. Если же объявить, что operator* возвращает константное значение, то такая ситуация станет невозможной. Вот почему Так Следует Поступать.

В отношении аргументов с модификатором const трудно сказать что-то новое; они ведут себя как локальные константные const-объекты. Всюду, где возможно, добавляйте этот модификатор. Если модифицировать аргумент или локальный объект нет необходимости, объявите его как const. Вам всего-то придется набрать шесть символов, зато это предотвратит досадные ошибки типа «хотел напечатать ==, а нечаянно напечатал =» (к чему это приводит, мы только что видели).

Константные функции-члены

Назначение модификатора const в объявлении функций-членов – определить, какие из них можно вызывать для константных объектов. Такие функции-члены важны по двум причинам. Во-первых, они облегчают понимание интерфейса класса, ведь полезно сразу видеть, какие функции могут модифицировать объект, а какие нет. Во-вторых, они обеспечивают возможность работать с константными объектами. Это очень важно для написания эффективного кода, потому что, как объясняется в правиле 20, один из основных способов повысить производительность программ на C++ – передавать объекты по ссылке на константу. Но эта техника будет работать только в случае, когда функции-члены для манипулирования константными объектами объявлены с модификатором const.

Многие упускают из виду, что функции, отличающиеся только наличием const в объявлении, могут быть перегружены. Это, однако, важное свойство C++. Рассмотрим класс, представляющий блок текста:


class TextBlock {

public:

...

const char& operator[](std::size_t position) const // operator[] для

{return text[position];} // константных объектов

char& operator[](std::size_t position) // operator[] для

{return text[position];} // неконстантных объектов

private:

std::string text;

};


Функцию operator[] в классе TextBlock можно использовать следующим образом:


TextBlock tb(“Hello”);

Std::cout << tb[0]; // вызов неконстантного

// оператора TextBlock::operator[]

const TextBlock ctb(“World”);

Std::cout << ctb[0]; // вызов константного

// оператора TextBlock::operator[]


Кстати, константные объекты чаще всего встречаются в реальных программах в результате передачи по указателю или ссылке на константу. Приведенный выше пример ctb является довольно искусственным. Но вот вам более реалистичный:


void print(const TextBlock& ctb) // в этой функции ctb – ссылка

// на константный объект

{

std::cout << ctb[0]; // вызов const TextBlock::operator[]

...

}


Перегружая operator[] и создавая различные версии с разными возвращаемыми типами, вы можете по-разному обрабатывать константные и неконстантные объекты TextBlock:


std::cout << tb[0]; // нормально – читается

// неконстантный TextBlock

tb[0] = ‘x’; // нормально – пишется

// неконстантный TextBlock

std::cout << ctb[0]; // нормально – читается

// константный TextBlock

ctb[0] = ‘x’; // ошибка! – запись

// константного TextBlock


Отметим, что ошибка здесь связана только с типом значения, возвращаемого operator[]; сам вызов operator[] проходит нормально. Причина ошибки – в попытке присвоить значение объекту типа const char&, потому что это именно такой тип возвращается константной версией operator[].

Отметим также, что тип, возвращаемый неконстантной версией operator[], – это ссылка на char, а не сам char. Если бы operator[] возвращал просто char, то следующее предложение не скомпилировалось бы:


tb[0] = ‘x’;


Это объясняется тем, что возвращаемое функцией значение встроенного типа модифицировать некорректно. Даже если бы это было допустимо, тот факт, что C++ возвращает объекты по значению (см. правило 20), означал бы следующее: модифицировалась копия tb.text[0], а не само значение tb.text[0]. Вряд ли это то, чего вы ожидаете.

Давайте немного передохнем и пофилософствуем. Что означает для функции-члена быть константной? Существует два широко распространенных понятия: побитовая константность (также известная как физическая константность) и логическая константность.

Сторонники побитовой константности полагают, что функция-член константна тогда и только тогда, когда она не модифицирует никакие данные-члены объекта (за исключением статических), то есть не модифицирует ни одного бита внутри объекта. Определение побитовой константности хорошо тем, что ее нарушение легко обнаружить: компилятор просто ищет присваивания членам класса. Фактически, побитовая константность – это константность, определенная в C++: функция-член с модификатором const не может модифицировать нестатические данные-члены объекта, для которого она вызвана.

К сожалению, многие функции-члены, которые ведут себя далеко не константно, проходят побитовый тест. В частности, функция-член, которая модифицирует то, на что указывает указатель, часто не ведет себя как константная. Но если объекту принадлежит только указатель, то функция формально является побитово константной, и компилятор не станет возражать. Это может привести к неожиданному поведению. Например, предположим, что есть класс подобный Text-Block, где данные хранятся в строках типа char * вместо string, поскольку это необходимо для передачи в функции, написанные на языке C, который не понимает, что такое объекты типа string.


class CtextBlock {

public:

...

char& operator[](std::size_t position) const // неудачное (но побитово

{ return pText[position]} // константное)

// объявление operator[]

private:

char *pText;

};


В этом классе функция operator[] (неправильно!) объявлена как константная функция-член, хотя она возвращает ссылку на внутренние данные объекта (эта тема обсуждается в правиле 28). Оставим это пока в стороне и отметим, что реализация operator[] никак не модифицирует pText. В результате компилятор спокойно сгенерирует код для функции operator[]. Ведь она действительно является побитово константной, а это все, что компилятор может проверить. Но посмотрите, что происходит:


const CtextBlock cctb(“Hello”); // объявление константного объекта

char &pc = &cctb[0]; // вызов const operator[] для получения

// указателя на данные cctb

*pc = ‘j’; // cctb теперь имеет значение “Jello”


Несомненно, есть что-то некорректное в том, что вы создаете константный объект с определенным значением, вызываете для него только константную функцию-член и тем не менее изменяете его значение!

Это приводит нас к понятию логической константности. Сторонники этой философии утверждают, что функции-члены с const могут модифицировать некоторые биты вызвавшего их объекта, но только так, чтобы пользователь не мог этого обнаружить. Например, ваш класс CTextBlock мог бы кэшировать длину текстового блока при каждом запросе:


Class CtextBlock {

public:

...

std::size_t length() const;

private:

char *pText;

std::size_t textLength; // последнее вычисленное значение длины

// текстового блока

bool lengthIsValid; // корректна ли длина в данный момент

};

std::size_t CtextBlock::length() const

{

if(!lengthIsValid) {

textLength = std::strlen(pText); // ошибка! Нельзя присваивать

lengthIsValid = true; // значение textLength и

} // lengthIsValid в константной

// функции-члене

return textLength;

}


Эта реализация length(), конечно же, не является побитово константной, поскольку может модифицировать значения членов textLength и lengthlsValid. Но в то же время со стороны кажется, что константности объектов CTextBlock это не угрожает. Однако компилятор не согласен. Он настаивает на побитовой константности. Что делать?

Решение простое: используйте модификатор mutable. Он освобождает нестатические данные-члены от ограничений побитовой константности:


Class CtextBlock {

public:

...

std::size_t length() const;

private:

char *pText;

mutable std::size_t textLength; // Эти данные-члены всегда могут быть

mutable bool lengthIsValid; // модифицированы, даже в константных

}; // функциях-членах

std::size_t CtextBlock::length() const

{

if(!lengthIsValid) {

textLength = std::strlen(pText); // теперь порядок

lengthIsValid = true; // здесь то же

}

return textLength;

}

Как избежать дублирования в константных и неконстантных функциях-членах

Использование mutable – замечательное решение проблемы, когда побитовая константность вас не вполне устраивает, но оно не устраняет всех трудностей, связанных с const. Например, представьте, что operator[] в классе TextBlock (и CTextBlock) не только возвращает ссылку на соответствующий символ, но также проверяет выход за пределы массива, протоколирует информацию о доступе и, возможно, даже проверяет целостность данных. Помещение всей этой логики в обе версии функции operator[] – константную и неконстантную (даже если забыть, что теперь мы имеем необычно длинные встроенные функции – см. правило 30) – приводит к такому вот неуклюжему коду:


class TextBlock {

public:

...

const char& operator[](std::size_t position) const

{

... // выполнить проверку границ массива

... // протоколировать доступ к данным

... // проверить целостность данных

return text[position];

}

char& operator[](std::size_t position) const

{

... // выполнить проверку границ массива

... // протоколировать доступ к данным

... // проверить целостность данных

return text[position];

}

private:

std:string text;

};


Ох! Налицо все неприятности, связанные с дублированием кода: увеличение времени компиляции, размера программы и неудобство сопровождения. Конечно, можно переместить весь код для проверки выхода за границы массива и прочего в отдельную функцию-член (естественно, закрытую), которую будут вызывать обе версии operator[], но обращения к этой функции все же будут дублироваться.

В действительности было бы желательно реализовать функциональность operator[] один раз, а использовать в двух местах. То есть одна версия operator[] должна вызывать другую. И это подводит нас к вопросу об отбрасывании константности.

С самого начала отметим, отбрасывать константность нехорошо. Я посвятил целое правило 27 тому, чтобы убедить вас не делать этого, но дублирование кода – тоже не сахар. В данном случае константная версия operator[] делает в точности то же самое, что неконстантная, и отличие между ними – лишь в присутствии модификатора const. В этой ситуации отбрасывать const безопасно, поскольку пользователь, вызывающий неконстантный operator[], так или иначе должен получить неконстантный объект. Ведь в противном случае он не стал бы вызывать неконстантную функцию. Поэтому реализация неконстантного operator[] путем вызова константной версии – это безопасный способ избежать дублирования кода, даже пусть даже для этого требуется воспользоваться оператором const_cast. Ниже приведен получающийся в результате код, но он станет яснее после того, как вы прочитаете следующие далее объяснения:


class TextBlock {

public:

...

const char& operator[](std::size_t position) const // то же, что и раньше

{

...

...

...

return text[position];

}

char& operator[](std::size_t position) const // теперь просто

// вызываем const op[]

{

return

const_cast( // из возвращаемого типа

// op[] исключить const

static_cast(*this) // добавить const типу

// *this

[position] // вызвать константную

); // версию op[]

}

...

};


Как видите, код включает два приведения, а не одно. Мы хотим, чтобы неконстантный operator[] вызывал константный, но если внутри неконстантного оператора [] просто вызовем operator[], то получится рекурсивный вызов. Во избежание бесконечной рекурсии нужно указать, что мы хотим вызвать const operator[], но прямого способа сделать это не существует. Поэтому мы приводим *this от типа TextBlock& к const TextBlock&. Да, мы выполняем приведение, чтобы добавить константность! Таким образом, мы имеем два приведения: одно добавляет константность *this (чтобы был вызван const operator[]), а второе – исключает const из типа возвращаемого значения.

Приведение, которое добавляет const, выполняет безопасное преобразование (от неконстантного объекта к константному), поэтому мы используем для этой цели static_cast. Приведение же, которое отбрасывает const, может быть выполнено только с помощью const_cast, поэтому у нас здесь нет выбора. (Строго говоря, выбор есть. Приведение в стиле C также работает, но, как я объясняю в правиле 27, такие приведения редко являются правильным рещением. Если вы не знакомы с операторами static_cast или const_cast, прочитайте о них в правиле 27.)

Помимо всего прочего, в этом примере мы вызываем оператор, поэтому синтаксис выглядит немного странно. Возможно, этот код не займет приз на конкурсе красоты, зато позволяет достичь нужного эффекта – избежать дублирования посредством реализации неконстантной версии operator[] в терминах константной. И хотя для достижения цели пришлось воспользоваться неуклюжим синтаксисом, который сможете понять только вы сами, однако техника реализации неконстантных функций-членов через неконстантные определенно заслуживает того, чтобы ее знать.

А еще нужно иметь в виду, что решать эту задачу наоборот – путем вызова неконстантной версии из константной – неправильно. Помните, что константная функция-член обещает никогда не изменять логическое состояние объекта, а неконстантная не дает таких гарантий. Если вы вызовете неконстантную функцию из константной, то рискуете получить ситуацию, когда объект, который не должен модифицироваться, будет изменен. Вот почему этого не следует делать: чтобы объект не изменился. Фактически, чтобы получить компилируемый код, вам пришлось бы использовать const_cast для отбрасывания константности *this, а это явный признак неудачного решения. Обратная последовательность вызовов – такая, как описана выше, – безопасна. Неконстантная функция-член может делать все, что захочет с объектом, поэтому вызов из нее константной функции-члена ничем не грозит. Потому-то мы и применяем к *this оператор static_cast, отбрасывания константности при этом не происходит.

Как я уже упоминал в начале этого правила, модификатор const – чудесная вещь. Для указателей и итераторов; для объектов, на которые ссылаются указатели, итераторы и ссылки; для параметров функций и возвращаемых ими значений; для локальных переменных, для функций-членов – всюду const ваш мощный союзник. Используйте его, где только возможно. Вам понравится!

Что следует помнить

• Объявление чего-либо с модификатором const помогает компиляторам обнаруживать ошибки. const можно использовать с объектами в любой области действия, с параметрами функций и возвращаемых значений, а также с функциями-членами в целом.

• Компиляторы проверяют побитовую константность, но вы должны программировать, применяя логическую константность.

• Когда константные и неконстантные функции-члены имеют, по сути, одинаковую реализацию, то дублирования кода можно избежать, заставив неконстантную версию вызывать константную.

Правило 4: Прежде чем использовать объекты, убедитесь, что они инициализированы