Эйнштейн. Его жизнь и его Вселенная — страница 50 из 157

Эйнштейн надеялся, что, если гравитационные уравнения поля из его новой теории относительности применить к Солнцу, они смогут объяснить аномалии орбиты Меркурия. К сожалению, в результате долгих расчетов и исправления ошибок они с Бессо получили для отклонения перигелия Меркурия значение, равное 18 угловым секундам за столетие, что больше чем вдвое отличалось от экспериментального значения. Такое плохое соответствие убедило Эйнштейна в том, что публиковать расчеты для Меркурия не следует, но не убедило отказаться от теории Entwurf, по крайней мере пока.

Эйнштейн и Бессо также размышляли над тем, можно ли в уравнениях теории Entwurf рассматривать вращение как форму относительного движения. Другими словами, представьте себе, что наблюдатель вращается и при этом испытывает действие сил инерции. Возможно ли это считать еще одним случаем относительного движения, то есть отличается ли вращение наблюдателя от той ситуации, когда он находится в состоянии покоя, а остальная часть Вселенной вращается вокруг него?

Самый известный мысленный эксперимент на эту тему был описан Ньютоном в третьем томе Principia. Представьте себе висящее на веревке ведро, которое мы начинаем вращать. Сначала поверхность воды в ведре остается неподвижной и плоской, но вскоре трение о стенки ведра увлекает воду за собой, и поверхность становится вогнутой. Почему? Потому что силы инерции выталкивают крутящуюся воду наружу, и она поднимается вверх по стенкам ведра.

Да, но, если мы подозреваем, что все движение относительно, мы спросим: относительно чего вращается вода? Не относительно ведра, потому что поверхность воды становится вогнутой, когда она вращается вместе с ведром, но продолжает вращаться внутри ведра в течение некоторого времени и тогда, когда оно уже остановилось. Возможно, вода крутится относительно окружающих тел, создающих гравитационные силы, таких как Земля?

Но представьте себе, что ведро крутится в далеком космосе, где нет ни силы тяжести, ни выделенных точек отсчета. Или представьте себе, что оно крутится в пространстве, где, кроме него, ничего нет. Будут ли все еще действовать силы инерции? Ньютон полагал, что будут, поскольку ведро вращается относительно абсолютного пространства.

Когда в середине XIX века кумир молодого Эйнштейна Эрнст Мах стал публиковать свои работы, в них он развенчал понятие абсолютного пространства и стал утверждать, что инерция существует, потому что вода вращается по отношению к остальной части материи во Вселенной. На самом деле, говорил он, те же эффекты наблюдались бы, если бы ведро покоилось, а остальная часть Вселенной вращалась бы вокруг него25.

Эйнштейн надеялся, что этот эффект, названный им “принципом Маха”, будет для общей теории относительности одним из пробных камней. Он обрадовался, когда, проанализировав уравнения теории Entwurf, пришел к выводу, что они как будто действительно предсказывали тождественность последствий для случаев, когда ведро вращается относительно Вселенной и когда оно неподвижно, а остальная часть Вселенной вращается вокруг него.

По крайней мере, так в тот момент думал Эйнштейн. Они с Бессо сделали ряд очень сложных расчетов, чтобы проверить, так ли это в действительности. В блокноте Эйнштейн записал радостное восклицание по поводу, как ему показалось, успешного завершения этих расчетов: “Значит, это правильно”.

К сожалению, они с Бессо в этой работе сделали несколько ошибок. Спустя два года Эйнштейн в конце концов обнаружит эти ошибки и поймет, что, к несчастью, теория Entwurf на самом деле не удовлетворяет принципу Маха[50]. По всей вероятности, Бессо уже предупреждал его, что такое может быть. В записке, которую он написал, видимо, в августе 1913, Бессо предположил, что “вращательная метрика” на самом деле не является решением уравнений поля из теории Entwurf.

Но Эйнштейн, как следует из писем к Бессо, а также к Маху и другим ученым, проигнорировал, по крайней мере на тот момент, эти сомнения26. Если эксперименты подтвердят теорию, то “ваши блестящие исследования по основам механики получат великолепное подтверждение, – написал Эйнштейн Маху через несколько дней после опубликования теории Entwurf, – поскольку тогда станет ясно, что инерция порождается взаимодействием тел в точном соответствии с вашими комментариями по поводу эксперимента с ведром Ньютона”27.

Больше всего беспокоило Эйнштейна в справедливости теории Entwurf то, что ее математические уравнения не удовлетворяли принципу общековариантности, таким образом, опровергая его предположение о том, что законы природы одинаковы для наблюдателя, находящегося в ускоренном или произвольном движении, и для наблюдателя, движущегося с постоянной скоростью. “К сожалению, вся теория такая хитрая, что у меня все еще нет полной уверенности в ней, – писал он в ответ на теплое поздравительном письме от Лоренца, – сами уравнения гравитации, к сожалению, не удовлетворяют свойствам общей ковариантности”28.

Вскоре он смог убедить себя хотя бы на некоторое время, что это было неизбежно. Отчасти он сделал это с помощью мысленного эксперимента, который стал называться “аргумент дырки”29 и который, казалось, позволял предположить, что Святой Грааль – общековариантность уравнений гравитационного поля – недостижим или по крайней мере физически неинтересен. “Тот факт, что уравнения гравитации не обладают общековариантностью, сильно беспокоил меня некоторое время, но этого не избежать, – написал он другу. – Легко показать, что теория с уравнениями, удовлетворяющими свойству общековариантности не может существовать, если наложить требование, что математически поле полностью определяется материей”30.

К тому времени очень немногие физики восприняли новую теорию Эйнштейна, а многие даже считали ее неправильной31. Эйнштейн был доволен уже тем, что, во всяком случае, тема теории относительности “привлекла должное внимание, – написал он своему другу Цангеру, – мне нравятся споры. Как пел Фигаро: “Если захочет барин попрыгать, я подыграю гитарой ему”[51]32.

Несмотря на все это, Эйнштейн продолжал попытки спасти свой подход, который он использовал в теории Entwurf. Он смог найти способы, или как минимум думал, что смог, для достижения достаточной ковариантности уравнений, позволяющих удовлетворить большинству требований своего принципа эквивалентности гравитации и ускорения. “Мне удалось доказать, что гравитационные уравнения справедливы для произвольно движущейся системы отсчета, и таким образом, гипотеза об эквивалентности ускорения и гравитационного поля является абсолютно правильной, – писал он Цангеру в начале 1914 года. – Природа показывает нам только хвост льва. Но я не сомневаюсь, что хвост принадлежит льву и лев существует, даже если он не может показаться нам весь сразу. Мы видим из него примерно столько же, сколько и блоха, сидящая на нем”33.

Фрейндлих и затмение 1914 года

Эйнштейн знал один способ развеять общие сомнения. Он часто заканчивал свои статьи предложениями способов постановки будущих экспериментов, которые могли бы подтвердить все теоретические результаты, сформулированные в этих статьях. В случае общей теории относительности он впервые использовал этот аргумент в 1911 году, предложив экспериментаторам проверить ее результаты, для чего указал довольно точно, насколько свет звезды, по его расчетам, будет отклоняться гравитационным полем Солнца.

Как он надеялся, эту величину можно было бы измерить по фотографиям звезд, сделанных в то время, когда свет от них проходит близко от Солнца, и сравнить их положение с тем, когда свет от них не проходит в непосредственной близости от Солнца, и это позволило бы определить, будет ли наблюдаться небольшой сдвиг в их положении. Но этот эксперимент нужно делать во время солнечного затмения, когда свет звезд не затмевает Солнце и их можно увидеть.

Так что неудивительно, что, учитывая яростные атаки со стороны коллег и собственные внутренние сомнения, Эйнштейн был остро заинтересован в результатах наблюдений, которые планировалось провести в ходе ближайшего полного затмения Солнца 21 августа 1914 года. Это потребовало организации экспедиции в Крым, в Россию, где затмение было полным.

Эйнштейн так хотел, чтобы его теория была проверена во время затмения, что, когда показалось, что для такой экспедиции может не найтись денег, он предложил оплатить часть расходов. Эрвин Фрейндлих, молодой астроном из Берлина, который прочитал работу Эйнштейна 1911 года с предсказаниями небольшого искривления лучей света, захотел доказать его правоту и был готов взять на себя руководство экспедицией. В начале 1912 года Эйнштейн написал ему: “Я очень рад, что вы взялись за вопрос об искривлении луча света с таким большим рвением”. В августе 1913 года он все еще забрасывает астронома вдохновляющими письмами. “Теоретики больше ничего не могут сделать, – писал он. – В этом вопросе только вы, астрономы, в следующем году можете оказать прямо-таки неоценимую услугу теоретической физике”34.

В августе 1913 года Фрейндлих женился и решил провести медовый месяц в горах недалеко от Цюриха в надежде встреться с Эйнштейном. Так и получилось. Когда Фрейндлих в письме Эйнштейну описал свои планы на медовый месяц, тот пригласил его в гости. Фрейндлих об этом написал своей невесте и заметил: “Это превосходно, потому что это согласуется с нашими планами”. Об ее реакции на перспективу провести часть своего медового месяца в обществе физика-теоретика, которого она никогда не встречала, история умалчивает.

Как вспоминала позже жена Фрейндлиха, когда молодожены вышли на Цюрихском железнодорожном вокзале, их встречал растрепанный Эйнштейн в большой соломенной шляпе, а рядом стоял толстенький химик Фриц Габер. Эйнштейн привез всю компанию в соседний город, где прочитал лекцию, после чего пригласил их на обед. Естественно, он забыл взять с собой деньги, и помощник, который пришел вместе с ним, под столом сунул ему банкноту в 100 франков. Большую часть времени Фрейндлих с Эйнштейном обсуждали гравитацию и искривление лучей света, не прервав дискуссию, даже когда они отправились на прогулку, оставив новоиспеченную жену Фрейндлиха в одиночестве любоваться пейзажем