Электричество шаг за шагом — страница 53 из 103

sin, то это значит, что одна из величин зависит от другой точно так же, как длина линии синуса М зависит от угла α в известном круге неизвестного математического гения. Хотите знать, как именно зависит? Посмотрите в таблицу на рисунке Р-67 (в полном виде её, как уже говорилось, можно найти в справочнике) или на построенный на её основе график на этом же рисунке.



ВК-158.В трёхфазной системе крайне опасна повышенная нагрузка одной из фаз, а короткое замыкание в ней может привести к трагическим последствиям. При повышенной нагрузке в какой-либо фазе (тем более при коротком замыкании в ней) сильно возрастает напряжение в других фазах, и оно может стать опасным для включённых в сеть приборов. В каждом участке потребления есть предохранитель, отключающий в подобном случае линию электропитания, но знать о возможной опасности тоже полезно.


Т-130. Родившаяся из чисто геометрических построений синусоида, как оказалось, описывает много самых разных процессов, в том числе электрических. Зависимость, о которой рассказывают график и таблица на рисунке Р-67, как уже было отмечено, называется синусоидальной, или, иначе, гармонической зависимостью, а сама кривая на графике — синусоидой. Таблица и график — это своего рода рабочий инструмент, а обозначение sin — обычное математическое указание к действию. Когда мы видим запись А = В2, то знаем: чтобы найти А, нужно В возвести в квадрат, то есть провести простое умножение А = В2 = ВВ. Когда написано А = В/С, то А находят, разделив В на С. Когда же написано А = Вsin 60°, то для вычисления А нужно найти в таблице значение sinα для угла α = 60° и умножить В на найденную в таблице величину.

Можно, конечно, нарисовать много кривых, похожих на синусоиду, но синусоидой называется только одна (Р-60). Именно та, которая в точности соответствует таблице на рисунке Р-67. О замечательных особенностях синусоиды, о том, почему она оказалась столь универсальной, надо бы рассказать отдельно и подробнее. Но это уже когда-нибудь потом. Сейчас достаточно сказать, что в точности по синусоидальному сценарию протекает огромное множество природных процессов. По синусоиде, в частности, меняется энергия звуковой волны, скорость движения маятника, отклонение колеблющейся струны, изменение магнитного и электрического полей в радиоволне. Даже изменение численности зайцев в каком-либо регионе тоже очень напоминает синусоиду.

Для нас особо важно, что по закону синуса меняется скорость, с которой равномерно вращающиеся проводник или рамка из двух проводников пересекают магнитное поле. Поэтому в таком простейшем генераторе наводится синусоидальная — именно синусоидальная! — электродвижущая сила, а при подключении к нему нагрузки в цепи идёт синусоидальный ток.

Практически во всех генераторах переменного тока, от небольших, в бортовой сети автомобиля, до самых мощных генераторов на электростанциях, питающих электроэнергией города и страны, везде э.д.с. получают, вращая систему проводов в магнитном поле. Поэтому везде эта э.д.с. получается синусоидальной, и все потребители электроэнергии получают именно синусоидальное переменное напряжение в свои дома или на заводы. Правда, для некоторых транспортных машин, в частности для электропоездов и трамваев, переменное синусоидальное напряжение потом преобразуют в постоянное, но это уже совсем другая история.

Особый интерес представляет одна исключительно важная особенность синусоидальной зависимости, которую нетрудно заметить, если всмотреться в её график, особенно на рисунке Р-60.

Т-131. Скорость изменения синусоидального напряжения (э.д.с., тока) также изменяется по синусоидальному закону. В своё время мы обратили особое внимание на то, что в ряде случаев важна не абсолютная величина чего-либо (объёма воды, пройденного пути, тока), а скорость её изменения. Подтверждение этой истины в цепях переменного тока можно встретить на каждом шагу, и для синусоидальных процессов она приобретает особое значение. Чтобы увидеть это, давайте для начала посмотрим, чему равна скорость изменения переменного синусоидального напряжения U (напряжение выбрано в качестве примера, то же самое можно было бы сказать о токе или э.д.с.).

Синусоидальное напряжение U в разные моменты меняется с разной скоростью. Иногда график этого напряжения идёт вверх или вниз круто — напряжение меняется резко, быстро. Иногда график сравнительно пологий — напряжение меняется вяло, медленно. Скорость изменения считается положительной, если напряжение меняется в сторону положительной амплитуды, а если оно движется в сторону отрицательной амплитуды — скорость отрицательная. Если измерять скорость изменения синусоиды и построить график изменения этой скорости, то окажется, что это тоже синусоида, но сдвинутая по фазе на четверть периода, то есть на 90 градусов (Р-60.5). Если подобным образом исследовать любые другие переменные напряжения (несколько примеров на рисунках Р-60.1, Р-60.2, Р-60.3, Р-60.4), то ничего подобного мы не обнаружим — синусоида единственная в своём роде.

То, что мы установили для синусоидального напряжения (ещё раз повторим — скорость его изменения меняется по такому же синусоидальному закону, как и само напряжение), относится к любому другому процессу, график которого синусоида, в частности, к синусоидальному току, отклонению маятника, колебаниям струны, изменению электрического поля в световой волне и многим другим. Обнаруженная одинаковость графиков синусоидального напряжения и скорости его изменения приводит к исключительно важным последствиям.

Глава 11Ожидаемые неожиданности

Мы подключили к источнику переменного напряжения конденсатор и, как выяснилось чуть выше, в цепи конденсатора пошёл переменный ток. Казалось бы, если последовательно с конденсатором включить катушку, то она как-то увеличит общее сопротивление и ток в цепи уменьшится. В действительности может случиться так, что ток не только не уменьшится, но даже возрастёт, привлекая наш внимание к удивительным особенностям цепей переменного тока. В них происходит много такого, чего не было в цепях постоянного тока: непрерывно меняется уровень и направление питающего напряжения, непрерывно сменяют друг друга зарядный и разрядный токи в цепи конденсатора, непрерывно меняется магнитное поле катушки, а значит, в ней наводится э.д.с. Всё это вполне может давать какие-то новые, пока неожиданные для нас эффекты.

Т-132. Синусоидальное напряжение создаёт синусоидальный ток через конденсатор; ток опережает напряжение (или, иначе, напряжение отстаёт от тока) на 90 градусов. Для начала попробуем постепенно менять постоянное напряжение на конденсаторе, подключив его к делителю напряжения. Мы уже знаем, что в момент, когда напряжение на конденсаторе меняется, в его цепи идёт зарядный либо разрядный ток — избыточные заряды двигаются к обкладкам либо уходят с них. Чем резче, чем быстрее мы меняем напряжение на конденсаторе, тем больше эти токи, что вполне объяснимо. Если взять конденсатор ёмкостью 1 Ф и изменить на нём напряжение на 1 В, то на обкладках накопится лишний кулон зарядов — 1 К, это следует из самого определения единицы ёмкости фарад. В случае если менять напряжение быстро и если, скажем, заряд 1 К перейдёт на обкладки за 0,1 с, то средний ток составит 10 А. А если менять напряжение на конденсаторе медленнее, если, например, увеличить напряжение на 1 В за 10 с, то зарядный ток будет значительно меньше и составит лишь 0,1 А.

Теперь мы можем, несколько опережая главные события, предварительно взглянуть на рисунок Р-61. Напряжение, действующее на конденсаторе, всё время меняется и создаёт ток в цепи — то зарядный, то разрядный. Это заряды периодически то приходят на обкладки конденсатора, то уходят с них. Наибольший ток будет в те моменты, когда напряжение меняется с максимальной скоростью, то есть когда оно проходит через ноль (в частности, фаза 180°). Во время амплитуды напряжения (фазы 90° и 270°) ток в цепи равен нулю — какое-то неуловимое мгновение напряжение как бы не меняется, оно уже перестало расти, но ещё не начало уменьшаться. Когда напряжение растёт (приближается к положительной амплитуде), мы считаем ток положительным. Когда напряжение падает (изменяется в сторону отрицательной амплитуды), направление тока меняется на обратное, и мы называем это направление отрицательным.

Подведём итог, он очень важен и прост. Если на конденсатор подано синусоидальное напряжение Uс, то скорость его изменения тоже синусоида, и поэтому в цепи течёт синусоидальный ток Iс. Но скорость и само напряжение сдвинуты по фазе на 90 градусов, и поэтому такой же фазовый сдвиг существует между напряжением на конденсаторе и током в его цепи. Конкретно, меняясь так же, как скорость изменения Uc, ток опережает напряжение на 90 градусов — на четверть периода. Или, что то же самое, напряжение отстаёт от тока на 90 градусов. Это не нужно понимать так, будто ток появляется раньше, чем мы прикладываем к конденсатору напряжение, подобное невозможно. Просто амплитуда тока наступает на четверть периода раньше, чем амплитуда напряжения.

Т-133. Ёмкостное сопротивление Хс, как и R, измеряется в омах и говорит о том, какой будет ток при данном напряжении, однако мощности Хс не потребляет. Возьмём из предыдущего раздела твёрдо установленную истину: если к конденсатору подвести переменное напряжение, то в цепи этого конденсатора пойдёт переменный ток. Причём сила тока может быть различной, она, в частности, зависит от ёмкости С конденсатора — чем больше С, тем больше ток (при одном и том же напряжении!), поскольку больше зарядов движется в цепи при заряде и разряде конденсатора.