Чтобы проверить эту гипотезу, продолжим свой мысленный эксперимент и разделим наэлектризованную молекулу на составные части.
ВК-25. Предположим, что в этих больших пластиковых мешках ионизированный газ с беспорядочным расположением зарядов (слева), и поэтому с нулевым внешним электрическим полем. Поднесённый к одному из мешков (справа) стержень с положительным электрическим зарядом осуществил так называемую поляризацию газа, притянул к себе электроны и оттолкнул положительные заряды, создав две области с зарядом + и —. Во многих случаях каждая из них может вести себя как отдельный заряд.
Р-7. ЧЕЛОВЕК, КОТОРЫЙ УВИДЕЛ ПОРЯДОК В ПОЛНОМ ХАОСЕ. Так же энергично, как другие области знаний, химия развивалась с началом эпохи Возрождения. В обиход вошло представление о химическом элементе как о чистейшем веществе, которое в другие вещества уже не превращается. Вместе с тем получалось, что каждый элемент был создан природой как бы самостоятельно и не был частью какой-либо единой системы. В 1869 году профессор общей химии Петербургского университета и руководитель химической лаборатории Петербургского технологического института Дмитрий Иванович Менделеев отправил в ведущие научные учреждения России и других стран сообщение об открытой им системе химических элементов. В этой системе химические свойства элементов изменялись по мере роста их атомной массы, но в то же время эти свойства в какой-то мере повторялись периодически, через определённое число шагов увеличения массы. В построенную на основе этой системы первую таблицу Д.И. Менделеева вошло 66 элементов, известных в то время, но элементам, открытым позже, всегда находилось место в ней. В апреле 2010 года в таблице Менделеева было 118 химических элементов, из них 94 имеются в природе, остальные получены на ускорителях, причём некоторые живут доли секунды и тут же распадаются. Главная сила представлений Д.И. Менделеева в том, что они появились лишь из глубокого понимания химии, когда практически ничего ещё не было известно об устройстве атомов. Эти представления не теряли свою силу, а получали лишь подкрепление и поддержку с принятием планетарной модели атома (1911 г.), при открытии протонов (1919 г.), нейтронов (1932 г.) и законов формирования электронных оболочек (1926, 1951 гг.). На рисунке показан несколько упрощённый вариант таблицы элементов, построенной на основе открытого Д.И. Менделеевым периодического закона. Синим цветом приближённо указан атомный вес элемента, который значительно больше веса всех протонов (порядковый номер элемента) за счёт появившихся в ядре нейтронов.
Т-24. В поисках элементарного, то есть самого маленького в природе, электрического заряда мы разбираем молекулу на атомы. Молекул а любого вещества состоит из типовых блоков — из атомов. Всего сегодня известно 118 основных типов различных атомов. Из них 92 вида атомов устойчивы, остальные со временем сами по себе распадаются на составные части, причём некоторые очень быстро — за малые доли секунды. Химики называют атомы разного типа химическими элементами, имея, очевидно, в виду, что это и есть элементарные блоки, из которых собраны все природные и искусственные вещества.
В молекулу могут входить самые разные атомы и в самом разном количестве (в молекуле воды — три атома, в молекуле белка — десятки тысяч), атомы могут по-разному соединяться друг с другом, образовывать различные пространственные конструкции. И в итоге из небольшого сравнительно количества элементов (118 — это тоже немного, но в строительстве молекул в основном используется 40–50 разновидностей атомов) получаете я огромное количество комбинаций, образуются миллиарды самых разных веществ. Разные сочетания разных атомов дают воздух и воду, мрамор и зелёный лист винограда, соль и сахар, стекло и пластмассу.
Продолжив свой мысленный эксперимент и разобрав на части молекулы подопытных веществ — стекла и пластмассы, — мы обнаружим, что и среди атомов попадаются совершенно, казалось бы, одинаковые на вид, но при этом разные по своим электрическим свойствам. Мы обнаружим наэлектризованные атомы и не наэлектризованные, другими словами, атомы с электрическим зарядом и без него, то есть электрически нейтральные. И после этого нам не остаётся ничего другого, как в поисках мельчайшей порции электрического заряда разобрать на части сам атом.
ВК-26.В мелких клочках бумаги под действием электрического поля наэлектризованного предмета тоже происходит поляризация. Но не за счёт перемещения атомов, а за счёт некоторого вытягивания их электронных орбит. В результате этой массовой деформации орбит в одной части бумажного лепестка оказывается более сильным положительный заряд, а в противоположной части — отрицательный. Одну из этих частей и притягивает наэлектризованный предмет, заставляя двигаться весь лепесток.
Т-25. Несколько похвальных слов моделям и моделированию. Склеенная из пластмассы модель самолёта или даже летающая его модель лишь в небольшой степени похожи на воздушный лайнер, который берёт на борт сотню пассажиров. Но вместе с тем, рассматривая эти модели, можно узнать много важного о настоящих самолётах, об их устройстве, об основных деталях, о том, для чего эти детали нужны. Ещё одна разновидность модели — чертежи, на них отрабатывается и предварительно проверяется будущая реальная машина. На чертежах, например, без огромных затрат на постройку реальных образцов, проверяют, как соединятся, состыкуются будущие детали самолёта.
Здесь хочется сказать несколько слов о самом этом понятии «модель», о котором надо бы написать отдельную книжку, а ещё лучше — никем пока, к сожалению, не запланированный школьный учебник.
Умение строить модели можно встретить только у живых организмов, кварцевый кристалл или горная река моделей не строят. Да и в мире живого у первых примитивных его представителей тоже не было никаких приспособлений, чтобы строить модели. А те, у кого такие приспособления появлялись, получали огромное преимущество, они чаще побеждали в борьбе за существование, их род успешно продолжался и совершенствовался. К примеру, древние насекомые, охотясь за пищей, создавали в особых своих нервных узлах (из них у некоторых видов в дальнейшем образовался мозг) своего рода химический чертёж, модель этой охоты. Порывшись в памяти, они проверяли, годится ли намеченная жертва на обед, на модели обстановки определяли, куда «пища» перемещается, как надо двигаться самому, чтобы перехватить её. Именно такое моделирование вместо бесконечных проб и опасных ошибок оказалось могучей движущей силой развития живых существ.
ВК-27.Атом в действительности очень «воздушная» конструкция, в нём много «пустоты». Если представить себе атомное ядро размером с яблоко, то в этом масштабе окажется, что электроны размером с пылинку вращаются вокруг ядра на расстоянии десятки и сотни метров. Большими бывают и межмолекулярные объёмы, где могут двигаться заряды. Но их подвижность, выраженная в конечном счёте величиной сопротивления, зависит не только от свободного пространства для перемещений.
Пришло время, появился Человек Разумный, мозг которого постепенно научился особо эффективно работать с моделями. И сейчас всё, о чём мы думаем, вспоминая, например, о вчерашнем дне, проверяя планы на завтра, погрузившись в грустные думы о ремонте автомобиля, предвкушая вкусный обед, обдумывая газетную статью, анализируя семейный конфликт или партию в шахматы, — всё это работа с мысленными моделями предметов, событий и действий. Мы умеем работать с моделями, созданными на основе разговорного языка, геометрических построений, математических формул, чертежей, химических уравнений, компьютерных программ. Мы умеем работать с моделями уже не только в уме, а во внешних вспомогательных устройствах, таких как компьютеры, книги, географические карты, фотографии. Всё это стало важнейшим инструментом познания мира и, может быть, даже основным слагаемым нашего нынешнего могущества.
Т-26. Планетарная модель атома — в центре массивное ядро, вокруг него вращаются электроны. Слово «атом» в переводе с греческого означает «неделимый». Это название появилось очень давно, когда о настоящих атомах, в современном понимании этого слова, никто и представления не имел. Просто считалось, что всякое вещество можно дробить на части до тех пор, пока не получатся мельчайшие невидимые пылинки, которые дальше уже разделить нельзя, невозможно. Именно эти гипотетические, то есть предполагаемые, неделимые пылинки древнегреческие философы и называли атомами. Позднее название «атом» перешло к частицам уже не гипотетическим, не придуманным, а совершенно реальным, обнаруженным в экспериментах. К тем самым основным блокам, из которых строятся разные молекулы, разные вещества. То, что молекулы собраны из атомов, было доказано в самых разных экспериментах и даже показано на специальных фотографиях с особо сильным увеличением.
ВК-28. Подвижность свободных зарядов в веществе, которое мы называем проводником, зависит от многих характеристик этого вещества. Прежде всего, конечно, от того, насколько легко образуются в нём ионы или насколько внешние электроны связаны со своим атомным ядром, насколько легко они могут уйти из атома. Кроме того, важно и то, как ведёт себя само вещество, насколько оно способствует или препятствует перемещению зарядов, насколько поддерживает это движение или противодействует ему.
Р-8. МОЛЕКУЛЫ — ГЛАВНЫЙ ПУТЬ К МНОГООБРАЗИЮ. После знакомства с атомами с разным числом протонов в ядре (Р-7) сделаем следующий шаг на пути к многообразию веществ. Мы соберём из разных атомов ещё более сложные блоки вещества — молекулы. Даже в сравнительно небольших молекулах добавление одного атома или замена одного из них на другой может резко изменить свойства вещества, состоящего из таких молекул. Более того, даже молекулы, одинаковые по химическому составу, то есть имеющие одно и то же количество определённых атомов, могут создавать совершенно разные в