ном или разрядном токе, который создаст лишь очень небольшое напряжение на резисторе, в то время как резкое изменение напряжения на входе будет полностью передано конденсатором и, следовательно, мы его получим на выходе.
Н. — Твое объяснение я понял, но совершенно не вижу, какую пользу может принести умение отделять быстро изменяющиеся сигналы от медленно изменяющихся.
Л. — У тебя просто короткая память. Вспомни то знаменитое устройство охраны от воров, с которым у тебя были некоторые неприятности…
Н. — О, не говори мне больше об этом ужасе, о нем я буду помнить всю жизнь!
Л. — Ты, вероятно, тем не менее помнишь, что я рекомендовал тебе использовать фотоэлектрический элемент. В этом случае было бы целесообразно поставить после фотоэлемента схему, чувствительную только к таким резким изменениям освещенности, какие может вызвать человек, проходящий между лампой и фотоэлементом. Таким образом, удастся устранить воздействие медленных изменений освещенности фотоэлемента, например при восходе солнца или при наступлении темноты.
Н. — А что нужно сделать, если бы потребовалось прямо обратное, т. е. система, чувствительная только к медленным изменениям освещенности и не реагирующая на резкие изменения?
Л. — В таком случае можно просто-напросто воспользоваться интегрирующей схемой на рис. 70. Если схема (см. рис. 64) представляет собой фильтр верхних частот, то схема (см. рис. 70) работает как фильтр нижних частот. Она устраняет высокочастотные составляющие или быстрые изменения и сохраняет постоянную и низкочастотные составляющие.
Одну аналогичную систему я установил на своем автомобиле. В передней части капота я поместил маленький фотоэлемент, который, приводя в действие триггер Шмитта, зажигает лампу на приборной доске, когда становится довольно темно, но пока я еще не включил фары. А так как я не хотел, чтобы эта лампа сигналила каждый раз, когда я проезжаю под тенистыми деревьями, я поставил фильтр, схема которого изображена на рис. 70, и снабдил его постоянной времени на добрый десяток секунд. Все происходит так, как если бы мой фотоэлемент срабатывал очень медленно и реагировал только на среднюю яркость неба, на которое он направлен.
Н. — Очень остроумная идея. Однако я хотел бы точно знать, что ты подразумеваешь под постоянной времени.
Л. — Речь идет о совершенно классической величине, которую используют во всех схемах, построенных на резисторе и конденсаторе. Видишь ли, Незнайкин, при умножении емкости конденсатора С, стоящего, например, в интегрирующей схеме, на сопротивление резистора R получают величину, которая имеет размерность времени и может быть выражена в секундах (при условии, что С выражено в фарадах, a R — в омах). Это время, необходимое для заряда или разряда конденсатора через резистор на 63 % относительно установившегося значения. Не проси меня обосновать это число, ибо это вынудило бы нас заняться дифференциальными уравнениями.
Н. — Все, что хочешь, но только не это!
Л. — Успокойся, в этом нет необходимости. По прошествии времени, равного постоянной времени RC, конденсатор зарядится или разрядится на 63 % относительно установившегося значения. По истечении удвоенной постоянной времени он зарядится или разрядится на 86 %. И, наконец, по прошествии утроенной постоянной времени его заряд (или разряд) достигнет 95 %. Иначе говоря, на характеристиках каждой конкретной дифференцирующей или интегрирующей схемы сказываются не индивидуальные значения R или С, а их произведение, выражаемое в секундах (или микросекундах) и именуемое постоянной времени.
Н. — Так, значит, если я правильно понял, когда потребовалось разделить сигналы по их длительности, ты выбрал малую постоянную времени по сравнению с длительностью сигнала на рис. 90, а и большую по сравнению с длительностью сигнала на рис. 91, а?
Л. — Ты совершенно прав, именно так выбирают постоянную времени. Впрочем, именно по этой причине дискриминатор по длительности сигналов работает тем эффективнее, чем выше отношение менаду длительностью длинного и короткого сигналов.
Беседа десятаяРЕЛЕ И ДВИГАТЕЛИ
Наши друзья проследили за полными приключений путешествиями сигнала и подошли к моменту, когда у них возникло желание использовать сигнал. Незнайкин узнает, что «Реле — это не так просто». Выясняется, что для осуществления вращения необходим двигатель. Любознайкин открывает ему секреты этих устройств и схем, которые могут ими управлять.
Любознайкин — А теперь мы рассмотрим различные типы исполнительных механизмов.
Незнайкин — Что это за приборы? До сих пор ты о них мне ничего не говорил.
Л. — Неправда, мы уже говорили о них; ты, вероятно, просто забыл, что всякая электронная аппаратура состоит из:
1) первичного преобразователя, превращающего исследуемое физическое явление в электрический сигнал;
2) промежуточного преобразователя сигнала;
3) исполнительного элемента, использующего преобразованный сигнал для измерения или выполнения требуемого действия.
Н. — О, наконец-то мы добрались до последнего звена. Это начинает становиться серьезным.
Л. — Но это, Незнайкин, всегда было серьезным. И если мы сейчас приступаем к последнему звену, нам еще придется немало поговорить о различных частных применениях электронных устройств. Но как бы то ни было, начнем мы с реле.
Н. — Это совершенно излишне, я основательно знаком с этим вопросом.
Л. — Ну, если по твоему преисполненному скромности выражению «ты основательно знаком с вопросом», я позволю себе спросить, а можешь ли ты сказать, как зависит сопротивление катушки конкретного реле от напряжения, при котором оно должно работать?
Н. — Хм… но это скорее вопрос для математика!
Л. — О, я не требую от тебя длинных и сложных математических выражений, я лишь прошу тебя немного подумать. Важной характеристикой каждого реле является необходимое для срабатывания число ампер-витков, иначе говоря, произведение количества витков катушки на ток, необходимый для того, чтобы сердечник притянул якорь и тем самым замкнул контакты реле.
Рассмотрим изображенное на рис. 92 реле. Размер реле в значительной степени определяется размерами катушки. Катушка состоит из некоторого количества витков провода определенного сечения и с определенным сопротивлением. Предположим, что мы заменим этот провод другим с втрое меньшим диаметром. Как изменится его сечение?
Рис. 92.Реле (его условное обозначение приведено справа) имеет катушку, создающую магнитное поле, под действием которого притягивается якорь, что приводит к замыканию или размыканию так называемых рабочих контактов.
Н. — Очень просто, в 3 раза.
Л. — За такой ответ, Незнайкин, я ставлю тебе нуль. Как можешь ты утверждать, что при уменьшении диаметра круга в 3 раза его площадь уменьшается во столько же раз? Ведь ты уже давно должен знать, что площадь круга пропорциональна квадрату его радиуса! Следовательно, уменьшив в 3 раза радиус (или диаметр) провода, мы в 9 раз уменьшим его сечение, что позволит нам при тех же размерах катушки намотать провода в 9 раз больше. Можешь ли ты сказать, какое сопротивление будет иметь наша новая катушка?
Н. — На этот раз все очень просто. Длина провода увеличилась в 9 раз, значит и его сопротивление стало в 9 раз больше.
Л. — На этот раз ты, Незнайкин, переходишь всякие границы! Разве ты забыл, что длина провода увеличилась в 9 раз, а его сечение уменьшилось тоже в 9 раз; следовательно, сопротивление провода возросло в 81 раз.
Н. — Вот так раз! Я никогда не подумал бы, что при уменьшении диаметра провода только в 3 раза так резко растет его сопротивление. Но ведь прохождение тока по такому проводу вызовет колоссальное рассеяние мощности.
Л. — Совсем нет. Раз новая катушка имеет витков в 9 раз больше, чем первая, то пропускаемый ток можно уменьшить в 9 раз. А принимая во внимание, что рассеиваемая мощность пропорциональна сопротивлению и квадрату тока, рассеиваемая в новой катушке мощность будет точно такой же, как в первой катушке. Полученный нами результат дает лишь самое общее представление; после определения объема меди в катушке только рассеиваемая в этой катушке мощность характеризует магнитное воздействие на якорь реле. Поэтому, характеризуя реле, говорят, что его мощность возбуждения 1 вт или 1/2 вт. Реле с катушкой из толстого провода рассчитано на управление большим током при низком напряжении, а реле с катушкой из тонкого провода включается в цепи с небольшим током при более высоком напряжении.
Обычные реле часто требуют для управления мощность около 1 вт. У более чувствительных реле для притягивания якоря достаточно 0,2 или даже 0,1 вт. Ультрачувствительные реле могут срабатывать при мощностях возбуждения порядка милливатта; обычно они способны включать и выключать только очень небольшие токи и поэтому непосредственно в исполнительных цепях совершенно не используются. Их применяют для приведения в действие промежуточных более мощных реле.
Н. — Мне в голову пришла великолепная идея: а что если ток пустить не прямо в обмотку реле, а подать его на базу транзистора, коллекторный ток которого протекает по катушке реле, ведь тогда для включения реле потребовалась бы значительно меньшая мощность. В случае надобности нужную мощность управляющего сигнала можно сократить, введя в схему еще один усилительный каскад на транзисторе.
Л. — Ты совершенно прав, Незнайкин, и мне остается лишь добавить, что эта идея уже предложена и даже реализована. Заводы уже выпускают реле, у которых рядом с катушкой размещается транзисторный усилитель (рис. 93); такие реле для своего управления требуют ничтожных мощностей. Существуют даже реле, в которых перед усилителем стоит триггер Шмитта, который с высокой точностью определяет уровни срабатывания и отпускания реле.