Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] — страница 109 из 125

Чтобы расширить пределы измерений, на вход включен переменный резистор R2, он подводит к усилителю лишь часть измеряемого напряжения. При измерениях, естественно, необходимо учитывать положение, в котором находится подвижный. контакт R2. Для этого на ось резистора насажена стрелка, которая при повороте оси перемещается по шкале «множитель».

Перед началом измерений движок R2 обязательно нужно установить в крайнее нижнее положение и потом медленно поднимать его вверх по схеме до загорания лампочки. Забыв это правило, вы рискуете «пробить» входную цепь Т1 самим измеряемым напряжением. Индикатором можно оценивать и переменные напряжения, умножая «показания прибора» на 2,— если, например, при переменном напряжении лампочка горит так же ярко, как при постоянном 1 В, то, значит, эффективное переменное напряжение (Т-69) примерно равно 2 В. Дело в том, что переменное напряжение детектируется во входной цепи Т1: при положительных полупериодах транзистор закрыт. И в итоге лампочка получает лишь половину той энергии, которую дало бы переменное напряжение, если бы не было отсечки.

Добавив резистор R1 (показан пунктиром), можно легко оценивать индикатором напряжения в несколько десятков вольт.


11, 12. Вольтметр с лампочкой



Прибор этот, в отличие от предыдущих, назван вольтметром потому, что он позволяет оценивать напряжение уже довольно точно. В схему введен собранный на Т1, Т2 пороговый элемент — триггер Шмитта (Т-268), который срабатывает сам и открывает усилитель постоянного тока (ТЗ, Т4) только при строго определенном входном напряжении. Порог срабатывания определяется элементами схемы, он обычно лежит в пределах 0,8–1,5 В, точно величину «зажигающего напряжения» нужно проверить нормальным стрелочным вольтметром.

Входной делитель напряжения R1, R2, как и в предыдущем случае, расширяет пределы измерений вольтметра. Выключатель В1 — без фиксатора, он сделан из латунной или стальной пластинки, нажав на которую подают к схеме питание только на момент измерений.

К-3, К-4. Некоторые элементы электронных схем (радиодетали)

1, 2. Здесь показано условное обозначение резистора R, внешний вид и устройство одного из непроволочных резисторов (МЛТ) и остеклованного, то есть залитого стеклом (эмалью), проволочного резистора (ПЭ).



Проволочные резисторы рассчитаны на сравнительно большие токи и мощности, обычно на десятки ватт; непроволочные резисторы рассчитаны на мощности от долей ватта до нескольких ватт (Р-27). Конструктивная основа типичного непроволочного резистора — керамическая трубка; на нее нанесен тончайший слой проводящего материала, который и определяет сопротивление резистора (2). Выводы соединяются с проводящим слоем с помощью металлических колпачков. Если на резисторе выделяется мощность больше той, на которую он рассчитан, то резистор темнеет и в итоге сгорает (разрушается токопроводящий слой, образуется разрыв цепи).

3, 4. Тонкое токопроводящее покрытие, нанесенное на дужку из изолятора, определяет сопротивление переменного резистора.




По проводящему слою движется скользящий контакт; его иногда полезно смазать капелькой вазелина (вскрыв корпус резистора), чтобы улучшить соединение скользящего контакта с проводящим слоем. Существует несколько конструктивных разновидностей переменных резисторов, в том числе и переменные резисторы, сдвоенные и спаренные с выключателем. Кроме того, переменные резисторы различаются зависимостью самого сопротивления R от угла поворота движка (4). Здесь различают резисторы типа А с линейной зависимостью, типа Б — с логарифмической и типа В — с показательной зависимостью. В регуляторах громкости усилителей НЧ необходимо применять резисторы с показательной зависимостью, то есть типа В; это позволит учесть особенности нашего слуха (закон Вебера-Фехнера; Т-102) и плавно регулировать громкость звука.

5, 6, 7, 8. Разнообразен ассортимент конденсаторов сравнительно небольшой емкости (от единиц пФ до сотен тысяч пФ, то есть десятых долей мкФ).



В одних основой служит керамический диск с напыленными с обеих сторон металлическими обкладками (5; конденсатор дисковый керамический) или керамическая трубка (7). В конденсаторах КЛС (6) используется диэлектрик с большим ε, и поэтому их габариты сравнительно невелики. В конденсаторах КЛС-Н30, и Н70 на высоких частотах в диэлектрике возникают сильные потери энергии, и эти конденсаторы относят к числу низкочастотных. В недалеком прошлом были очень распространены хорошие высокочастотные конденсаторы КСО (8; конденсатор слюдяной, опрессованный в пластмассу).

9. Емкость конденсаторов переменной емкости — КПЕ — образована двумя группами пластин — ротором 1 и статором 2.



При монтаже всегда заземляют (соединяют с общим приводом) ротор: он сидит на металлической оси, и когда рука коснется ручки настройки, связанной с этой осью, то заметно изменится емкость конденсатора, если ротор не будет заземлен. Различают КПЕ с твердым диэлектриком (пластиковая пленка) между пластинами и с воздушным (между пластинами просто воздух). Основная характеристика КПЕ — его максимальная и минимальная емкость и соответственно коэффициент перекрытия на емкости кс (Р-122).

10. В керамических подстроечных конденсаторах (иногда говорят «конденсаторы полупеременной емкости») одна из обкладок, напыленная на керамический диск, вращается вместе с этим диском относительно второй.



У наиболее распространенных подстроечных конденсаторов емкость меняется от 3–5 пФ до 15–30 пФ, но у некоторых типов (например, КПК-2; его сразу можно узнать по большим размерам) от 5–8 пФ до 120–150 пФ; иногда радиолюбители используют такие конденсаторы вместо КПЕ для настройки контура. Подстроечный конденсатор небольшой емкости можно изготовить самому, намотав на кусочек толстого провода ПЭ (одна обкладка) тонкий провод ПЭ (вторая обкладка).

11. В низкочастотных цепях, где нужна очень большая емкость (от единицы до тысяч мкФ), используют электролитические конденсаторы.



Они бывают нескольких типов — ЭМ (малогабаритные), К50-3 и К50-6 (тоже малогабаритные), КЭ (среди них часто встречаются такие, которые крепятся к монтажной панели гайкой). Электролитические конденсаторы включают только в такие цепи, где, кроме переменного, действует еще и постоянное напряжение, оно обязательно должно быть приложено к электролитическому конденсатору, причем в строго определенной полярности. Некоторые типы электролитических конденсаторов могут работать и без постоянного напряжения, их можно отличить по сравнительно большим габаритам и отсутствию знаков «+» и «—» на корпусе.

12. Бумажные конденсаторы тоже бывают разных типов, бумажные малогабаритные (КБМ), герметизированные (КБГМ), малогабаритные металлизированные (МБМ) и др.



Их основа — ленты фольги и изоляции (тонкая бумага), свернутые спиралью. В последние годы все чаще можно встретить конденсаторы, где нет фольги, в них на пленку или на бумагу нанесен тончайший слой металла, и сама пленка тоже свернута спиралью. Кстати, подобным же образом устроены электролитические конденсаторы, но в них между обкладками находится пастообразный или жидкий электролит; если электролит высыхает, конденсатор теряет емкость.

13. Из огромного ассортимента электромагнитных реле обычно используется лишь несколько типов (С-20).



Если на схеме несколько реле, то их контакты обозначают дробью, где в числителе порядковый номер реле на данной схеме, а в знаменателе номер его контакта (Р-152).

14. Стирающие магнитные головки, как правило, собраны на ферритовом сердечнике, записывающие, воспроизводящие и универсальные — на сердечнике из тонкого пермаллоя.



Эти головки защищены магнитным экраном из пермаллоя, а стирающие обычно запрессованы в пластмассу. Магнитный зазор создается тонкой пленкой бронзовой фольги.

15–34. За последние годы несколько раз менялась система условных изображений и сокращенных буквенных обозначений большинства деталей радио- и электронной аппаратуры. В синих рамках на рисунках 15–34 показаны последние из принятых условных изображений и буквенных обозначений для наиболее часто встречающихся в любительской литературе радиодеталей.



На этих рисунках: 15 — резисторы, 16 — конденсаторы, 17 — диод, 18 — стабилитрон, 19 — светодиод, 20 — варикап, 21 — транзистор, 22 — полевой транзистор, 23 — электронная лампа, 24 — интегральная микросхема, 25 — предохранитель, 26 — химический источник тока, 27 — антенна, 28 — магнитная антенна, 29 — трансформатор, 30 — катушка индуктивности, 31 — выключатель, 32 — переключатель двухпозиционный, 33 — кнопочный включатель, 34 — переключатель многопозиционный.

35–41. В описаниях радиоэлектронной аппаратуры часто приводятся схемы соединения ее основных узлов, как их называют, скелетные схемы или блок-схемы. На таких схемах каждый блок изображается прямоугольником или треугольником, при этом названия блоков пишут в самих прямоугольниках либо отображают некоторым набором условных знаков.


Примеры таких условных обозначений приведены на рисунках: 35 — генератор высокочастотного переменного тока (напряжения), 36 — амплитудный детектор, 37 — преобразователь частоты, 38 — фильтр нижних частот, 39 — полосовой фильтр, 40 — частотный детектор (модулятор),