Т-134. Важные параметры диода: допустимое обратное напряжение, допустимый прямой ток, прямое и обратное сопротивление. Но вот при некотором обратном напряжении, превышающем допустимую величину Uобр.доп, обратный ток резко нарастает. Это происходит быстрое лавинообразное разрушение структуры полупроводника, и диод выходит из строя. Кстати, возможны два разных, но одинаково трагичных повреждения диода — разрыв, отгорание контактов внутри прибора или короткое их замыкание, превращение диода в обычный проводник. Допустимое обратное напряжение входит в число основных параметров диода (С-14), напряжение это, естественно, ни в коем случае нельзя превышать.
Другой ограничивающий параметр — допустимый прямой ток Iдоп. Проходя через диод, прямой ток выделяет в нем некоторую тепловую энергию, нагревает прибор. А нагревание очень опасно для полупроводниковых материалов, оно увеличивает количество неосновных носителей заряда. Вот почему приходится ограничивать величину прямого тока и еще ограничивать рабочую температуру полупроводниковых приборов. Для германиевых диодов и транзисторов предельная рабочая температура +60 °C, а для кремниевых она значительно выше — до +150 °C.
Есть у полупроводникового диода еще два важных параметра — его прямое и обратное сопротивление, то есть сопротивление при разной полярности приложенного к диоду напряжения (Р-79;3,4). У плоскостных диодов, в которых площадь соприкосновения зон пир сравнительно велика, прямое сопротивление обычно не более нескольких Ом, обратное — несколько кОм или несколько десятков кОм. У точечных диодов, где площадь рn-перехода мала (Т-136), прямое сопротивление — несколько десятков Ом, обратное — сотни кОм и даже несколько МОм.
Во всех случаях прямое сопротивление во много раз меньше обратного, и в этом, собственно говоря, отражена так называемая односторонняя проводимость диода. Под действием напряжения диод пропускает ток, и в электрическую цепь он входит как резистор. Но конечно же, диод принципиально отличается от нормального резистора, сопротивление которого одинаково при любых направлениях тока. И, рассматривая поведение диода в электрической цепи, его приходится считать либо большим, либо малым сопротивлением, в зависимости от полярности приложенного напряжения, в зависимости от направления тока.
Т-135. Под действием переменного напряжения в цепи диода появляется пульсирующий ток. До сих пор мы подводили к диоду постоянные напряжения, теперь попробуем подвести переменное. Что при этом произойдет, легко узнать, если к вольт-амперной характеристике (Р-80) пристыковать график переменного напряжения, подобно тому, как мы это делали, рассматривая работу громкоговорителя (Р-73). Пользуясь этими двумя состыкованными графиками — вольт-амперной характеристикой и графиком переменного напряжения, — легко построить третий, график тока, который пойдет в цепи диода (Р-81).
Р-81
Без всяких пояснений видно, что по характеру изменения ток, а вместе с ним и выходное напряжение, уже совершенно не похож на входное напряжение. В одну сторону идут значительные импульсы прямого тока, в другую — ничтожно малые импульсы обратного тока. В большинстве случаев можно вообще пренебречь этими небольшими всплесками обратного тока и считать, что в цепи диода есть только токовые импульсы одного направления.
Как видите, диод производит чрезвычайно сложную операцию — искажает форму сигнала, резко меняет его спектр, создает сильные нелинейные искажения. Такие искажения сигнала в ряде случаев совершенно необходимы, и во многих схемах диод оказывается основным действующим лицом (Т-281).
Т-136. Плоскостные и точечные диоды различаются допустимыми параметрами и собственной емкостью. Полупроводниковый диод — это своего рода конденсатор: зону n и зону р можно рассматривать как обкладки конденсатора, область рn-перехода— как изолятор между обкладками (Р-82;1). Емкость полупроводникового диода — это бесплатное приложение к его основному электрическому свойству — к односторонней проводимости. И нужно сказать, во многих случаях приложение весьма вредное. Так, в частности, собственная емкость диода создает нежелательный обходной путь для переменного тока, который нужно направить через диод (Р-82;4).
Р-82
Чтобы поднять допустимую величину прямого тока, площадь рn-перехода в диоде нужно увеличивать — при этом уменьшится прямое сопротивление диода, уменьшится выделяемая на нем тепловая мощность (Р = I2R), а значит, и опасность перегрева. Но одновременно возрастает собственная емкость диода — чем больше площадь пластин конденсатора, тем больше его емкость. Там, где такая емкость недопустима, скажем в цепях переменного тока высокой частоты, применяются точечные диоды (Р-82;2). В них рn-переход имеет очень небольшую площадь, он образуется в месте прикосновения тонкой проволочки к кристаллу. Естественно, что точечные диоды не могут пропускать большой ток (С-14), но, к счастью, в подавляющем большинстве случаев от них это и не требуется.
В то же время есть тип полупроводниковых диодов, где главным работающим параметром становится «бесплатное приложение» к односторонней проводимости — собственная емкость диода. Это варикапы, полупроводниковые диоды, которые используются в качестве конденсаторов переменной емкости. Много лет назад, когда варикапов не было и в помине, радиолюбители применяли вместо конденсатора настройки обычные плоскостные диоды — их включали, например, в колебательный контур, одновременно подавали на диод обратное напряжение и меняли его с помощью потенциометра (Р-80). При этом менялась собственная емкость диода, так как менялось расстояние между «обкладками» — чем больше обратное напряжение, тем сильнее оттягиваются р- и n-области от пограничной линии (Р-82;5).
Достаточно велик список профессий диода, в которых используется не его односторонняя проводимость, а прежде всего совсем иные свойства и процессы. В этом списке, например, открывание диода и пропускание прямого тока лишь под действием света (фотодиод), который определенным образом меняет свойства того или иного полупроводникового материала. В этом списке и излучение света в светодиодах — в излучение превращается часть энергии прямого тока. Такие светящиеся диоды можно увидеть в некоторых современных телевизорах возле кнопок переключения программ. Светоизлучающими диодами также высвечивают цифры в некоторых микрокалькуляторах и электронных часах — для этого используют семисегментные светодиоды, то есть приборы, где конструктивно объединены семь диодов-штрихов, разные их сочетания дают цифры от 0 до 9 (К-21;4).
Особого типа излучающие диоды — основа полупроводниковых лазеров: здесь, как и в светодиодах, излучение возникает за счет энергии прямого тока и излучателями становятся сами атомы полупроводникового кристалла. Иной механизм излучения у диодов Ганна, где под действием тока излучается уже не свет, а радиоволны. Здесь главную роль играют электрические домены — своего рода острова электрического поля в кристалле. Уместно вспомнить еще и туннельный диод, в числе основных профессий которого тоже генерирование высокочастотных колебаний — здесь, благодаря тонким физическим процессам в рn-переходе (туннельный эффект), у диода при определенном режиме появляется так называемое отрицательное сопротивление: диод не отбирает энергию, а как бы отдает ее в ту цепь, куда включен. Сложные физические процессы определяют важнейшее качество диода-стабилитрона, позволяющего поддерживать неизменным режим электрической цепи при случайных изменениях питающего напряжения (Т-286, Р-171).
Т-137. Односторонняя проводимость полупроводникового диода обнаруживается уже в простейших опытах. Нетрудно понять человека, который, познакомившись со сложным физическим процессом по его краткому и упрощенному описанию с картинками, испытывает некоторые сомнения. Откуда известно, что все происходит именно так? Как доказать, что добавление индия действительно создает в германии или кремнии дырочную проводимость? Что при одной полярности напряжения заряды оттягиваются от рn-перехода, а при другой полярности — устремляются к нему? И что он вообще существует, этот рn-переход, что есть зоны разной проводимости в совершенно однородном по внешнему виду кристаллике?
Процессы, которые происходят в полупроводниковых приборах, конечно же, тщательно исследованы специалистами. Более того, создание диодов и транзисторов стало возможным только благодаря тому, что физики глубоко проникли в самые тонкие механизмы взаимодействия атомов, изменения структуры вещества, поведения его в разных условиях. Сегодня исследователи полупроводниковых кристаллов могут не только экспериментально доказать, что добавление индия создает в германии или кремнии дырочную проводимость. Они могут точно определить количество дырок или свободных электронов в единице объема, измерить время жизни свободных зарядов, среднюю скорость их перемещения в электрическом поле. С помощью электронного микроскопа исследователи могут просто увидеть рn-переход, проследить за процессами, которые в нем происходят при прямом и обратном включении.
У вас под руками нет, по-видимому, электронного микроскопа и других приборов, которые помогли бы прямыми опытами и демонстрациями проиллюстрировать рассказ о событиях в полупроводниковом диоде. Но вы все же можете провести эксперимент, который, по крайней мере, докажет правдоподобность выводов об односторонней проводимости рn-перехода. Причем не мысленный эксперимент, как часто бывало раньше, а настоящий, «в металле». Для него нужны батарейка, лампочка и любой плоскостной диод. Весь ход эксперимента показан на Р-79; 5. Он безоговорочно подтверждает: диод пропускает ток в одну сторону, его прямое сопротивление мало, а обратное — велико.
Т-138.